Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
def get_args_parser(): | |
parser = argparse.ArgumentParser(description='Optimal Transport AutoEncoder training for Amass', | |
add_help=True, | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
## dataloader | |
parser.add_argument('--prompt', type=str, default="Generate a textual description corresponding to the given sequence of human motion tokens.", help='task description') | |
parser.add_argument('--input', type=str, help='generation condictions') | |
parser.add_argument('--dataname', type=str, default='t2m', help='dataset directory') | |
parser.add_argument('--pretrained_llama', type=str, default="13B") | |
parser.add_argument('--out_dir', type=str, default='./out/', help='output directory') | |
parser.add_argument('--vqvae_pth', type=str, default='/comp_robot/lushunlin/MotionGPT/checkpoints/pretrained_vqvae/t2m.pth', help='path to the pretrained vqvae pth') | |
parser.add_argument('--resume_pth', type=str, help='path to saved finetuned model') | |
parser.add_argument('--lora_path', type=str, help='path to fintuned model for evaluation') | |
parser.add_argument('--data_dir', type=str, default='./data/', help='dataset directory') | |
## lora | |
parser.add_argument('--lora_r', type=int, default=64) | |
parser.add_argument('--lora_alpha', type=int, default=16) | |
parser.add_argument('--lora_dropout', type=float, default=0.05) | |
## llama | |
parser.add_argument('--block_size', type=int, default=512) | |
## train | |
parser.add_argument('--batch_size', type=int, default=256, help='batch size') | |
parser.add_argument('--micro_batch_size', type=int, default=4, help='micro batch size') | |
parser.add_argument('--learning_rate', type=float, default=3e-3, help='learning rate') | |
parser.add_argument('--weight_decay', type=float, default=0.01, help='weight decay') | |
parser.add_argument('--warmup_steps', type=int, default=100, help='warmup steps') | |
parser.add_argument('--eval_interval', type=int, default=100, help='evaluation frequency') | |
parser.add_argument('--save_interval', type=int, default=100, help='model save frequency') | |
parser.add_argument('--eval_iters', type=int, default=100, help='number of evaluation ierations') | |
parser.add_argument('--log_interval', type=int, default=1, help='log frequency') | |
## vqvae | |
parser.add_argument("--code_dim", type=int, default=512, help="embedding dimension") | |
parser.add_argument("--nb_code", type=int, default=512, help="nb of embedding") | |
parser.add_argument("--mu", type=float, default=0.99, help="exponential moving average to update the codebook") | |
parser.add_argument("--down_t", type=int, default=2, help="downsampling rate") | |
parser.add_argument("--stride_t", type=int, default=2, help="stride size") | |
parser.add_argument("--width", type=int, default=512, help="width of the network") | |
parser.add_argument("--depth", type=int, default=3, help="depth of the network") | |
parser.add_argument("--dilation_growth_rate", type=int, default=3, help="dilation growth rate") | |
parser.add_argument("--output_emb_width", type=int, default=512, help="output embedding width") | |
parser.add_argument('--vq_act', type=str, default='relu', choices = ['relu', 'silu', 'gelu'], help='dataset directory') | |
parser.add_argument('--seed', default=123, type=int, help='seed for initializing vqvae training.') | |
parser.add_argument('--window_size', type=int, default=64, help='training motion length') | |
## quantizer | |
parser.add_argument("--quantizer", type=str, default='ema_reset', choices = ['ema', 'orig', 'ema_reset', 'reset'], help="eps for optimal transport") | |
parser.add_argument('--quantbeta', type=float, default=1.0, help='dataset directory') | |
## visualization | |
parser.add_argument("--render", action='store_true', help='render smpl') | |
parser.add_argument("--motion_vq_token_path", type=str, help='vq token path for motion visualization') | |
## for motionx zero shot | |
parser.add_argument('--motionx_zero_shot_path', type=str, help='zero shot motion dataset directory') | |
parser.add_argument("--projectionnn", action='store_true', help='MLP projection') | |
parser.add_argument("--diverse", action='store_true', help='diverse description') | |
parser.add_argument("--vinilla", action='store_true', help='vinilla motion') | |
# subparsers = parser.add_subparsers(help='sub-command help') | |
# model_subparser = subparsers.add_parser('model_config', help='subparser1 help') | |
parser.add_argument('--image_tower', type=str, default='LanguageBind/LanguageBind_Image', help='if use multimodal image tower') | |
parser.add_argument('--video_tower', type=str, default='LanguageBind/LanguageBind_Video_merge', help='if use multimodal video tower') | |
parser.add_argument('--mm_vision_select_layer', type=int, default=-2, help='if use multimodal video tower') | |
parser.add_argument('--mm_projector_type', type=str, default='mlp2x_gelu', help='if use multimodal video tower') | |
parser.add_argument('--mm_hidden_size', type=int, default=1024, help='if use multimodal video tower') | |
parser.add_argument('--hidden_size', type=int, default=4096, help='if use multimodal video tower') | |
return parser.parse_args() | |