import shutil
import subprocess
import torch
import gradio as gr
from fastapi import FastAPI
import os
from PIL import Image
import tempfile
from decord import VideoReader, cpu
import uvicorn
from transformers import TextStreamer
import hashlib
import os
import sys
import time
import warnings
from pathlib import Path
from typing import Optional
from typing import Dict, List, Literal, Optional, Tuple
from lit_gpt.lora import GPT, Block, Config, lora_filter, mark_only_lora_as_trainable
import lightning as L
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from generate import generate as generate_
from lit_llama import Tokenizer, LLaMA, LLaMAConfig
from lit_llama.lora import lora
from lit_llama.utils import EmptyInitOnDevice
from lit_gpt.utils import lazy_load
from scripts.video_dataset.prepare_video_dataset_video_llava import generate_prompt_mlp
from options import option
import imageio
from tqdm import tqdm
from models.multimodal_encoder.builder import build_image_tower, build_video_tower
from models.multimodal_projector.builder import build_vision_projector
import spaces
title_markdown = ("""
MotionLLM: Understanding Human Behaviors from Human Motions and Videos
πCo-first author. Listing order is random. π€Corresponding author.
1THU
2CUHK (SZ)
3IDEA Research
4HKUST
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
tos_markdown = ("""
*We are now working to support the motion branch of the MotionLLM model.
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content.
It is forbidden to use the service to generate content that is illegal, harmful, violent, racist, or sexual
The usage of this service is subject to the IDEA License.
""")
learn_more_markdown = ("""
### License
License for Non-commercial Scientific Research Purposes
IDEA grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under IDEAβs copyright interests to reproduce, distribute, and create derivative works of the text, videos, codes solely for your non-commercial research purposes.
Any other use, in particular any use for commercial, pornographic, military, or surveillance, purposes is prohibited.
Text and visualization results are owned by International Digital Economy Academy (IDEA).
You also need to obey the original license of the dependency models/data used in this service.
""")
class LlavaMetaModel:
def __init__(self, config, pretrained_checkpoint):
super(LlavaMetaModel, self).__init__()
# import pdb; pdb.set_trace()
if hasattr(config, "mm_image_tower") or hasattr(config, "image_tower"):
self.image_tower = build_image_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
if hasattr(config, "mm_video_tower") or hasattr(config, "video_tower"):
self.video_tower = build_video_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
self.load_video_tower_pretrained(pretrained_checkpoint)
def get_image_tower(self):
image_tower = getattr(self, 'image_tower', None)
if type(image_tower) is list:
image_tower = image_tower[0]
return image_tower
def get_video_tower(self):
video_tower = getattr(self, 'video_tower', None)
if type(video_tower) is list:
video_tower = video_tower[0]
return video_tower
def get_all_tower(self, keys):
tower = {key: getattr(self, f'get_{key}_tower') for key in keys}
return tower
def load_video_tower_pretrained(self, pretrained_checkpoint):
self.mm_projector.load_state_dict(pretrained_checkpoint, strict=True)
def initialize_image_modules(self, model_args, fsdp=None):
image_tower = model_args.image_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_image_tower = image_tower
image_tower = build_image_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.image_tower = [image_tower]
else:
self.image_tower = image_tower
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = image_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.mm_projector = build_vision_projector(self.config)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def initialize_video_modules(self, model_args, fsdp=None):
video_tower = model_args.video_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_video_tower = video_tower
video_tower = build_video_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.video_tower = [video_tower]
else:
self.video_tower = video_tower
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = video_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.mm_projector = build_vision_projector(self.config)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def encode_images(self, images):
image_features = self.get_image_tower()(images)
image_features = self.mm_projector(image_features)
return image_features
def encode_videos(self, videos):
# import pdb; pdb.set_trace()
# videos: torch.Size([1, 3, 8, 224, 224])
video_features = self.get_video_tower()(videos) # torch.Size([1, 2048, 1024])
video_features = self.mm_projector(video_features.float()) # torch.Size([1, 2048, 4096])
return video_features
def get_multimodal_embeddings(self, X_modalities):
Xs, keys= X_modalities
X_features = getattr(self, f'encode_{keys[0]}s')(Xs) # expand to get batchsize
return X_features
class Projection(nn.Module):
def __init__(self, ):
super().__init__()
self.linear_proj = nn.Linear(512, 4096)
def forward(self, x):
return self.linear_proj(x)
class ProjectionNN(nn.Module):
def __init__(self, ):
super().__init__()
self.proj = nn.Sequential(
nn.Linear(512, 4096),
nn.GELU(),
nn.Linear(4096, 4096)
)
def forward(self, x):
return self.proj(x)
class Conversation():
def __init__(self, output=None, input_prompt=None, prompt=None):
if output is None:
self.messages = []
else:
self.messages = []
self.append_message(prompt, input_prompt, output)
def append_message(self, output, input_prompt, prompt, show_images):
# print(output)
# print(input_prompt)
# print(prompt)
# print(show_images)
self.messages.append((output, input_prompt, prompt, show_images))
def to_gradio_chatbot(self, show_images=None, output_text=None):
# return a list
if show_images is None:
show_images = self.messages[-1][3]
output_text = self.messages[-1][0]
return [
[show_images, output_text]
]
def get_info(self):
return self.messages[-1][0], self.messages[-1][1]
class ConversationBuffer():
def __init__(self, input_text):
self.buffer_ = []
self.buffer.append(input_text)
def init_conv():
conv = Conversation()
return conv
def get_processor(X, config, device, pretrained_checkpoint_tower, model_path = 'LanguageBind/MotionLLM-7B'):
mm_backbone_mlp_model = LlavaMetaModel(config, pretrained_checkpoint_tower)
processor = {}
if 'Image' in X:
image_tower = mm_backbone_mlp_model.get_image_tower() # LanguageBindImageTower()
if not image_tower.is_loaded:
image_tower.load_model()
image_tower.to(device=device, dtype=torch.float16)
image_processor = image_tower.image_processor
processor['image'] = image_processor
if 'Video' in X:
video_tower = mm_backbone_mlp_model.get_video_tower()
if not video_tower.is_loaded:
video_tower.load_model()
video_tower.to(device=device, dtype=torch.float16)
video_processor = video_tower.video_processor
processor['video'] = video_processor
return mm_backbone_mlp_model, processor
@spaces.GPU
def motionllm(
args,
input_video_path: str,
text_en_in: str,
quantize: Optional[str] = None,
dtype: str = "float32",
max_new_tokens: int = 200,
top_k: int = 200,
temperature: float = 0.8,
accelerator: str = "auto",):
video_tensor = video_processor(input_video_path, return_tensors='pt')['pixel_values']
if type(video_tensor) is list:
tensor = [video.to('cuda', dtype=torch.float16) for video in video_tensor]
else:
tensor = video_tensor.to('cuda', dtype=torch.float16) # (1,3,8,224,224)
X_modalities = [tensor,['video']]
video_feature = mm_backbone_mlp_model.get_multimodal_embeddings(X_modalities)
prompt = text_en_in
input_prompt = prompt
sample = {"instruction": prompt, "input": input_video_path}
prefix = generate_prompt_mlp(sample)
pre = torch.cat((tokenizer.encode(prefix.split('INPUT_VIDEO: ')[0] + "\n", bos=True, eos=False, device=device).view(1, -1), tokenizer.encode("INPUT_VIDEO: ", bos=False, eos=False, device=device).view(1, -1)), dim=1)
prompt = (pre, ". ASSISTANT: ")
encoded = (prompt[0], video_feature[0], tokenizer.encode(prompt[1], bos=False, eos=False, device=device).view(1, -1))
t0 = time.perf_counter()
output_seq = generate_(
model,
idx=encoded,
max_seq_length=4096,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
eos_id=tokenizer.eos_id,
tokenizer = tokenizer,
)
outputfull = tokenizer.decode(output_seq)
output = outputfull.split("ASSISTANT:")[-1].strip()
print("================================")
print(output)
print("================================")
return output, input_prompt, prompt
def save_image_to_local(image):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.jpg')
image = Image.open(image)
image.save(filename)
# print(filename)
return filename
def save_video_to_local(video_path):
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.mp4')
shutil.copyfile(video_path, filename)
return filename
@spaces.GPU
def generate(image1, video, textbox_in, first_run, state, images_tensor):
flag = 1
image1 = image1 if image1 else "none"
video = video if video else "none"
if type(state) is not Conversation:
state = init_conv()
images_tensor = [[], []]
first_run = False if len(state.messages) > 0 else True
text_en_in = textbox_in.replace("picture", "image")
output, input_prompt, prompt = motionllm(args, video, text_en_in)
text_en_out = output
textbox_out = text_en_out
show_images = ""
if os.path.exists(image1):
filename = save_image_to_local(image1)
show_images += f''
if os.path.exists(video):
filename = save_video_to_local(video)
show_images += f''
show_images = textbox_in + "\n" + show_images
state.append_message(output, input_prompt, prompt, show_images)
torch.cuda.empty_cache()
return (state, state.to_gradio_chatbot(show_images, output), False, gr.update(value=None, interactive=True), images_tensor, gr.update(value=image1 if os.path.exists(image1) else None, interactive=True), gr.update(value=video if os.path.exists(video) else None, interactive=True))
def regenerate(state):
if len(state.messages) > 0:
tobot = state.to_gradio_chatbot()
tobot[-1][1] = None
textbox = state.messages[-1][1]
state.messages.pop(-1)
return state, tobot, False, textbox
return (state, [], True)
def clear_history(state):
state = init_conv()
try:
tgt = state.to_gradio_chatbot()
except:
tgt = [None, None]
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),\
gr.update(value=None, interactive=True),\
True, state, tgt, [[], []])
def get_md5(file_path):
hash_md5 = hashlib.md5()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def logging_up(video, state):
try:
state.get_info()
except:
return False
action = "upvote"
# Get the current time
current_time = str(time.time())
# Create an md5 object
hash_object = hashlib.md5(current_time.encode())
# Get the hexadecimal representation of the hash
md5_hash = get_md5(video) + "-" + hash_object.hexdigest()
command = f"cp {video} ./feedback/{action}/mp4/{md5_hash}.mp4"
os.system(command)
with open (f"./feedback/{action}/txt/{md5_hash}.txt", "w") as f:
out, prp = state.get_info()
f.write(f"==========\nPrompt: {prp}\n==========\nOutput: {out}==========\n")
return True
def logging_down(video, state):
try:
state.get_info()
except:
return False
action = "downvote"
# Get the current time
current_time = str(time.time())
# Create an md5 object
hash_object = hashlib.md5(current_time.encode())
# Get the hexadecimal representation of the hash
md5_hash = get_md5(video) + "-" + hash_object.hexdigest()
command = f"cp {video} ./feedback/{action}/mp4/{md5_hash}.mp4"
os.system(command)
with open (f"./feedback/{action}/txt/{md5_hash}.txt", "w") as f:
out, prp = state.get_info()
f.write(f"==========\nPrompt: {prp}\n==========\nOutput: {out}==========\n")
return True
torch.set_float32_matmul_precision("high")
warnings.filterwarnings('ignore')
args = option.get_args_parser()
args.lora_path = "motionllm-ckpt/v-1-0/lora.pth"
args.mlp_path = "motionllm-ckpt/v-1-0/linear.pth"
conv_mode = "llava_v1"
model_path = 'LanguageBind/Video-LLaVA-7B'
device = 'cuda'
load_8bit = False
load_4bit = True
dtype = torch.float16
if not os.path.exists("temp"):
os.makedirs("temp")
lora_path = Path(args.lora_path)
pretrained_llm_path = Path(f"./checkpoints/vicuna-7b-v1.5/lit_model.pth")
tokenizer_llm_path = Path("./checkpoints/vicuna-7b-v1.5/tokenizer.model")
# assert lora_path.is_file()
assert pretrained_llm_path.is_file()
assert tokenizer_llm_path.is_file()
accelerator = "auto"
fabric = L.Fabric(accelerator=accelerator, devices=1)
dtype = "float32"
dt = getattr(torch, dtype, None)
if not isinstance(dt, torch.dtype):
raise ValueError(f"{dtype} is not a valid dtype.")
dtype = dt
quantize = None
t0 = time.time()
mlp_path = args.mlp_path
pretrained_checkpoint_mlp = torch.load(mlp_path, map_location='cpu')
with EmptyInitOnDevice(
device=fabric.device, dtype=dtype, quantization_mode=quantize
), lora(r=args.lora_r, alpha=args.lora_alpha, dropout=args.lora_dropout, enabled=True):
checkpoint_dir = Path("checkpoints/vicuna-7b-v1.5")
lora_query = True
lora_key = False
lora_value = True
lora_projection = False
lora_mlp = False
lora_head = False
config = Config.from_name(
name=checkpoint_dir.name,
r=args.lora_r,
alpha=args.lora_alpha,
dropout=args.lora_dropout,
to_query=lora_query,
to_key=lora_key,
to_value=lora_value,
to_projection=lora_projection,
to_mlp=lora_mlp,
to_head=lora_head,
)
model = GPT(config).bfloat16()
X = ['Video']
mm_backbone_mlp_model, processor = get_processor(X, args, 'cuda', pretrained_checkpoint_mlp, model_path = 'LanguageBind/Video-LLaVA-7B')
video_processor = processor['video']
linear_proj = mm_backbone_mlp_model.mm_projector
# 1. Load the pretrained weights
pretrained_llm_checkpoint = lazy_load(pretrained_llm_path)
for key, value in pretrained_llm_checkpoint.items():
if isinstance(value, torch.Tensor):
pretrained_llm_checkpoint[key] = value.to('cpu')
# 2. Load the fine-tuned LoRA weights
lora_checkpoint = lazy_load(lora_path)
for key, value in lora_checkpoint.items():
if isinstance(value, torch.Tensor):
lora_checkpoint[key] = value.to('cpu')
# 3. merge the two checkpoints
model_state_dict = {**pretrained_llm_checkpoint, **lora_checkpoint}
model.load_state_dict(model_state_dict, strict=True)
print('Load llm base model from', pretrained_llm_path)
print('Load lora model from', lora_path)
# load mlp again, to en sure, not neccessary actually
linear_proj.load_state_dict(pretrained_checkpoint_mlp)
linear_proj = linear_proj.cuda()
print('Load mlp model again from', mlp_path)
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)
model.eval()
model = model.cuda()
linear_proj.eval()
tokenizer = Tokenizer(tokenizer_llm_path)
print('Load tokenizer from', tokenizer_llm_path)
print(torch.cuda.memory_allocated())
print(torch.cuda.max_memory_allocated())
app = FastAPI()
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title='MotionLLM', theme=gr.themes.Default(), css=block_css) as demo:
gr.Markdown(title_markdown)
state = gr.State()
buffer_ = gr.State()
first_run = gr.State()
images_tensor = gr.State()
with gr.Row():
with gr.Column(scale=3):
image1 = gr.State()
video = gr.Video(label="Input Video")
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(
examples=[
[
f"{cur_dir}/examples/Play_Electric_guitar_16_clip1.mp4",
"why is the girl so happy",
],
[
f"{cur_dir}/examples/guoyoucai.mov",
"what is the feeling of him",
],
[
f"{cur_dir}/examples/sprint_run_18_clip1.mp4",
"Why is the man running so fast?",
],
[
f"{cur_dir}/examples/lift_weight.mp4",
"Assume you are a fitness coach, refer to the video of the professional athlete, please analyze specific action essentials in steps and give detailed instruction.",
],
[
f"{cur_dir}/examples/Shaolin_Kung_Fu_Wushu_Selfdefense_Sword_Form_Session_22_clip3.mp4",
"wow, can you teach me the motion, step by step in detail",
],
[
f"{cur_dir}/examples/mabaoguo.mp4",
"why is the video funny?",
],
[
f"{cur_dir}/examples/COBRA_PUSH_UPS_clip2.mp4",
"describe the body movement of the woman",
],
[
f"{cur_dir}/examples/sample_demo_1.mp4",
"Why is this video interesting?",
],
],
inputs=[video, textbox],
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="MotionLLM", bubble_full_width=True, height=875)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(
value="Send", variant="primary", interactive=True
)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=True)
downvote_btn = gr.Button(value="π Downvote", interactive=True)
flag_btn = gr.Button(value="β οΈ Flag", interactive=True)
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=True)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
tmp = gr.State()
upvote_btn.click(logging_up, [video, state], [tmp])
downvote_btn.click(logging_down, [video, state], [tmp])
submit_btn.click(generate, [image1, video, textbox, first_run, state, images_tensor],
[state, chatbot, first_run, textbox, images_tensor, image1, video])
regenerate_btn.click(regenerate, [state], [state, chatbot, first_run, textbox]).then(
generate, [image1, video, textbox, first_run, state, images_tensor], [state, chatbot, first_run, textbox, images_tensor, image1, video])
clear_btn.click(clear_history, [state],
[image1, video, textbox, first_run, state, chatbot, images_tensor])
# app = gr.mount_gradio_app(app, demo, path="/")
# uvicorn.run(app)
demo.launch()