import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence def init_weight(m): if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): nn.init.xavier_normal_(m.weight) # m.bias.data.fill_(0.01) if m.bias is not None: nn.init.constant_(m.bias, 0) class MovementConvEncoder(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(MovementConvEncoder, self).__init__() self.main = nn.Sequential( nn.Conv1d(input_size, hidden_size, 4, 2, 1), nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), nn.Conv1d(hidden_size, output_size, 4, 2, 1), nn.Dropout(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), ) self.out_net = nn.Linear(output_size, output_size) self.main.apply(init_weight) self.out_net.apply(init_weight) def forward(self, inputs): inputs = inputs.permute(0, 2, 1) outputs = self.main(inputs).permute(0, 2, 1) # print(outputs.shape) return self.out_net(outputs) class TextEncoderBiGRUCo(nn.Module): def __init__(self, word_size, pos_size, hidden_size, output_size, device): super(TextEncoderBiGRUCo, self).__init__() self.device = device self.pos_emb = nn.Linear(pos_size, word_size) self.input_emb = nn.Linear(word_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) self.output_net = nn.Sequential( nn.Linear(hidden_size * 2, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size) ) self.input_emb.apply(init_weight) self.pos_emb.apply(init_weight) self.output_net.apply(init_weight) self.hidden_size = hidden_size self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) # input(batch_size, seq_len, dim) def forward(self, word_embs, pos_onehot, cap_lens): num_samples = word_embs.shape[0] pos_embs = self.pos_emb(pos_onehot) inputs = word_embs + pos_embs input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = cap_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) return self.output_net(gru_last) class MotionEncoderBiGRUCo(nn.Module): def __init__(self, input_size, hidden_size, output_size, device): super(MotionEncoderBiGRUCo, self).__init__() self.device = device self.input_emb = nn.Linear(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) self.output_net = nn.Sequential( nn.Linear(hidden_size*2, hidden_size), nn.LayerNorm(hidden_size), nn.LeakyReLU(0.2, inplace=True), nn.Linear(hidden_size, output_size) ) self.input_emb.apply(init_weight) self.output_net.apply(init_weight) self.hidden_size = hidden_size self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) # input(batch_size, seq_len, dim) def forward(self, inputs, m_lens): num_samples = inputs.shape[0] input_embs = self.input_emb(inputs) hidden = self.hidden.repeat(1, num_samples, 1) cap_lens = m_lens.data.tolist() emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True, enforce_sorted=False) gru_seq, gru_last = self.gru(emb, hidden) gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) return self.output_net(gru_last)