Exched's picture
Update app.py
a33cc3d verified
raw
history blame
1.23 kB
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
# Load the Hugging Face API token from environment variables
hf_token = os.getenv("HF_TOKEN")
# Model name
model_name = "meta-llama/Llama-2-7b-chat-hf"
# Load the model and tokenizer with the token
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
# Define the chat function
def chat_with_llama2(input_text):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(inputs["input_ids"], max_length=512, do_sample=True, top_p=0.95, top_k=60)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Create the Gradio interface
interface = gr.Interface(
fn=chat_with_llama2,
inputs="text",
outputs="text",
title="LLaMa 2 Chat HF",
description="Chat with LLaMa 2 model using Hugging Face Transformers and Gradio.",
examples=[
["Hello, LLaMa 2! How are you today?"],
["Can you tell me a joke?"],
["What is the capital of France?"]
]
)
# Launch the interface
if __name__ == "__main__":
interface.launch()