Spaces:
Runtime error
Runtime error
import os | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
# Load the Hugging Face API token from environment variables | |
hf_token = os.getenv("HF_TOKEN") | |
# Model name | |
model_name = "meta-llama/Llama-2-7b-chat-hf" | |
# Load the model and tokenizer with the token | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) | |
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token) | |
# Define the chat function | |
def chat_with_llama2(input_text): | |
inputs = tokenizer(input_text, return_tensors="pt") | |
outputs = model.generate(inputs["input_ids"], max_length=512, do_sample=True, top_p=0.95, top_k=60) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=chat_with_llama2, | |
inputs="text", | |
outputs="text", | |
title="LLaMa 2 Chat HF", | |
description="Chat with LLaMa 2 model using Hugging Face Transformers and Gradio.", | |
examples=[ | |
["Hello, LLaMa 2! How are you today?"], | |
["Can you tell me a joke?"], | |
["What is the capital of France?"] | |
] | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
interface.launch() | |