Spaces:
Running
Running
File size: 7,755 Bytes
632338f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
import pandas as pd
import os
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from uploads import add_new_eval
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@inproceedings{kumar-etal-2024-booksql,
title = "BookSQL: A Large Scale Text-to-SQL Dataset for Accounting Domain",
author = "Kumar, Rahul and Raja, Amar and Harsola, Shrutendra and Subrahmaniam, Vignesh and Modi, Ashutosh",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics",
month = "march",
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics"
}"""
api = HfApi()
TOKEN = os.environ.get("TOKEN", None)
LEADERBOARD_PATH = f"Exploration-lab/BookSQL-Leaderboard"
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
# Function to load data from a given CSV file
def baseline_load_data(tasks):
# version = version.replace("%", "p")
file_path = f"submissions/baseline/baseline.csv" # Replace with your file paths
df = pd.read_csv(file_path)
# we only want specific columns and in a specific order
# column_names = [
# "Method",
# "Submitted By",
# "L-NER",
# "RR",
# "CJPE",
# "BAIL",
# "LSI",
# "PCR",
# "SUMM",
# "Average",
# ]
column_names = [
"Method",
"Submitted By",
"EMA",
"EX",
"BLEU-4",
"ROUGE-L"
]
if tasks is None:
breakpoint()
# based on the tasks, remove the columns that are not needed
if "EMA" not in tasks:
column_names.remove("EMA")
if "EX" not in tasks:
column_names.remove("EX")
if "BLEU-4" not in tasks:
column_names.remove("BLEU-4")
if "ROUGE-L" not in tasks:
column_names.remove("ROUGE-L")
df = df[column_names]
# df = df.sort_values(by="Average", ascending=False)
df = df.drop_duplicates(subset=["Method"], keep="first")
return df
def load_data(tasks):
baseline_df = baseline_load_data(tasks)
return baseline_df
# Function for searching in the leaderboard
def search_leaderboard(df, query):
if query == "":
return df
else:
return df[df["Method"].str.contains(query)]
# Function to change the version of the leaderboard
def change_version(tasks):
new_df = load_data(tasks)
return new_df
# Initialize Gradio app
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
## 🥇 BookSQL Leaderboard
Given the importance and wide prevalence of business databases across the world, the proposed dataset, BookSQL focuses on the finance and accounting domain. Accounting databases are used across a wide spectrum of industries like construction, healthcare, retail, educational services, insurance, restaurant, real estate, etc. Business in these industries arranges their financial transactions into their own different set of categories (called a chart of accounts Industry Details in accounting terminology.
Text-to-SQL system developed on BookSQL will be robust at handling various types of accounting databases. The total size of the dataset is 1 million. The dataset is prepared under financial experts' supervision, and the dataset's statistics are provided in below table. The dataset consists of 27 businesses, and each business has around 35k - 40k transactions
Read more at [https://exploration-lab.github.io/BookSQL/](https://exploration-lab.github.io/BookSQL/).
Please follow this format for uploading prediction file (https://huggingface.co/spaces/Exploration-Lab/BookSQL/blob/main/sample_prediction.csv)
"""
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
) # .style(show_copy_button=True)
with gr.Tabs():
with gr.TabItem("Leaderboard"):
with gr.Row():
# tasks_checkbox = gr.CheckboxGroup(
# label="Select Tasks",
# choices=["L-NER", "RR", "CJPE", "BAIL", "LSI", "PCR", "SUMM"],
# value=["L-NER", "RR", "CJPE", "BAIL", "LSI", "PCR", "SUMM"],
# )
tasks_checkbox = gr.CheckboxGroup(
label="Select Tasks",
choices=["EMA","EX","BLEU-4","ROUGE-L"],
value=["EMA","EX","BLEU-4","ROUGE-L"],
)
with gr.Row():
search_bar = gr.Textbox(
placeholder="Search for methods...",
show_label=False,
)
leaderboard_table = gr.components.Dataframe(
value=load_data(
# "baseline",
["EMA","EX","BLEU-4","ROUGE-L"],
),
interactive=True,
visible=True,
)
# version_dropdown.change(
# change_version,
# inputs=[model_dropdown, version_dropdown, tasks_checkbox],
# outputs=leaderboard_table,
# )
# model_dropdown.change(
# change_version,
# inputs=[model_dropdown, version_dropdown, tasks_checkbox],
# outputs=leaderboard_table,
# )
search_bar.change(
search_leaderboard,
inputs=[
leaderboard_table,
search_bar,
# tasks_checkbox
],
outputs=leaderboard_table,
)
tasks_checkbox.change(
change_version,
inputs=[tasks_checkbox],
outputs=leaderboard_table,
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
method_name_textbox = gr.Textbox(label="Method name")
url_textbox = gr.Textbox(label="Url to model information")
with gr.Column():
organisation = gr.Textbox(label="Organisation")
mail = gr.Textbox(label="Contact email")
file_output = gr.File()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
method_name_textbox,
url_textbox,
file_output,
organisation,
mail,
],
submission_result,
)
gr.Markdown(
"""
## Quick Links
- [**GitHub Repository**](https://github.com/exploration-lab/BookSQL): Access the source code, fine-tuning scripts, and additional resources for the BookSQL dataset.
- [**arXiv Paper**](#): Detailed information about the BookSQL dataset and its significance in unlearning tasks.
- [**Dataset on Hugging Face**](https://huggingface.co/datasets/Exploration-Lab/BookSQL): Direct link to download the BookSQL dataset.
"""
)
# scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=1800)
# scheduler.start()
# demo.queue(default_concurrency_limit=40).launch()
# demo.launch()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
# demo.launch(debug=True)
demo.launch(share=True)
|