BookSQL-Leaderboard / uploads.py
rahulkiitk's picture
Updating Leaderboard code
632338f
raw
history blame
12.9 kB
from email.utils import parseaddr
from huggingface_hub import HfApi
import os
import datetime
import pandas as pd
import json
import evaluate as nlp_evaluate
import re
import sqlite3
import random
from tqdm import tqdm
import sys
import numpy as np
from sqlparse import parse
random.seed(10001)
bleu = nlp_evaluate.load("bleu")
rouge = nlp_evaluate.load('rouge')
LEADERBOARD_PATH = "Exploration-Lab/BookSQL-Leaderboard"
RESULTS_PATH = "Exploration-Lab/BookSQL-Leaderboard"
api = HfApi()
TOKEN = os.environ.get("TOKEN", None)
YEAR_VERSION = "2024"
sqlite_path = "accounting/accounting_for_testing.sqlite"
def format_error(msg):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"
def format_warning(msg):
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"
def format_log(msg):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def input_verification(method_name, url, path_to_file, organisation, mail):
for input in [method_name, url, path_to_file, organisation, mail]:
if input == "":
return format_warning("Please fill all the fields.")
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
if path_to_file is None:
return format_warning("Please attach a file.")
return parsed_mail
def replace_current_date_and_now(_sql, _date):
_sql = _sql.replace('current_date', "\'"+_date+"\'")
_sql = _sql.replace(', now', ", \'"+_date+"\'")
return _sql
def remove_gold_Non_exec(data,df1, sqlite_path):
con = sqlite3.connect(sqlite_path)
cur = con.cursor()
out, non_exec=[], []
new_df = df1.copy()
new_df.loc[:, 'Exec/Non-Exec'] = 0
for i,s in tqdm(enumerate(data)):
_sql = str(s).replace('"', "'").lower()
_sql = replace_current_date_and_now(_sql, '2022-06-01')
_sql = replace_percent_symbol_y(_sql)
try:
cur.execute(_sql)
res = cur.fetchall()
out.append(i)
except:
non_exec.append(i)
# print("_sql: ", _sql)
new_df.loc[out, 'Exec/Non-Exec'] = 1
con.close()
return out, non_exec, new_df
def remove_data_from_index(data, ind_list):
new_data=[]
for i in ind_list:
new_data.append(data[i])
return new_data
def parse_query(query):
parsed = parse(query)[0]
return parsed
def normalize_query(query):
# Remove comments
query = re.sub(r'--.*', '', query)
query = re.sub(r'/\*.*?\*/', '', query, flags=re.DOTALL)
# Remove extra whitespace
query = re.sub(r'\s+', ' ', query)
# Strip leading and trailing whitespace
query = query.strip()
return query.lower()
def get_exec_match_acc(gold, pred):
assert len(gold)==len(pred)
correct_sql_count=0
count=0
goldd = [re.sub(' +', ' ', str(g).replace("'", '"').lower()) for g in gold]
predd = [re.sub(' +', ' ', str(p).replace("'", '"').lower()) for p in pred]
# for g, p in zip(gold, pred):
# #extra space, double quotes, lower_case
# gg = re.sub(' +', ' ', str(g).replace("'", '"').lower())
# gg = re.sub(' +', ' ', str(p).replace("'", '"').lower())
# if gold==pred:
# count+=1
for q1, q2 in zip(goldd, predd):
q1 = normalize_query(q1)
q2 = normalize_query(q2)
parsed_query1 = parse_query(q1)
parsed_query2 = parse_query(q2)
if str(parsed_query1) == str(parsed_query2):
correct_sql_count+=1
return correct_sql_count/len(goldd), 0
def replace_percent_symbol_y(_sql):
_sql = _sql.replace('%y', "%Y")
return _sql
def get_exec_results(sqlite_path, scores, df, flag, gold_sql_map_res={}):
con = sqlite3.connect(sqlite_path)
cur = con.cursor()
i,j,count=0,0,0
out,non_exec={},{}
new_df = df.copy()
responses=[]
for s in tqdm(scores):
_sql = str(s).replace('"', "'").lower()
_sql = replace_current_date_and_now(_sql, '2022-06-01')
_sql = replace_percent_symbol_y(_sql)
try:
cur.execute(_sql)
res = cur.fetchall()
out[i] = str(res)
except Exception as err:
non_exec[i]=err
i+=1
if flag=='g':
new_df.loc[list(out.keys()), 'GOLD_res'] = list(out.values())
# assert len(gold_sql_map_res)==count
if flag=='p':
new_df.loc[list(out.keys()), 'PRED_res'] = list(out.values())
if flag=='d':
new_df.loc[list(out.keys()), 'DEBUG_res'] = list(out.values())
con.close()
return out, non_exec, new_df
def get_scores(gold_dict, pred_dict):
exec_count, non_exec_count=0, 0
none_count=0
correct_sql, incorrect_sql = [], []
for k, res in pred_dict.items():
if k in gold_dict:
if gold_dict[k]==str(None) or str(None) in gold_dict[k]:
none_count+=1
continue
if res==gold_dict[k]:
exec_count+=1
correct_sql.append(k)
else:
non_exec_count+=1
incorrect_sql.append(k)
return exec_count, non_exec_count, none_count, correct_sql, incorrect_sql
def get_total_gold_none_count(gold_dict):
none_count, ok_count=0, 0
for k, res in gold_dict.items():
if res==str(None) or str(None) in res:
none_count+=1
else: ok_count+=1
return ok_count, none_count
def Evaluate(df):
# df - [id, pred_sql]
pred_sql = df['pred_sql'].to_list()
ids = df['id'].to_list()
f = open(f"tests/test.json")
questions_and_ids = json.load(f)
ts = open(f"tests/test_sql.json")
gold_sql = json.load(ts)
gold_sql_list=[]
pred_sql_list=[]
questions_list=[]
for idx, pred in zip(ids, pred_sql):
ques = questions_and_ids[idx]['Query']
gd_sql = gold_sql[idx]['SQL']
gold_sql_list.append(gd_sql)
pred_sql_list.append(pred)
questions_list.append(ques)
df = pd.DataFrame({'NLQ':questions_list, 'GOLD SQL':gold_sql_list, 'PREDICTED SQL':pred_sql_list})
test_size = len(df)
pred_score = df['PREDICTED SQL'].str.lower().values
# debug_score = df['DEBUGGED SQL'].str.lower().values
gold_score1 = df['GOLD SQL'].str.lower().values
print("Checking non-exec Gold sql query")
gold_exec, gold_not_exec, new_df = remove_gold_Non_exec(gold_score1, df, sqlite_path)
print("GOLD Total exec SQL query: {}/{}".format(len(gold_exec), test_size))
print("GOLD Total non-exec SQL query: {}/{}".format(len(gold_not_exec), test_size))
prev_non_exec_df = new_df[new_df['Exec/Non-Exec'] == 0]
new_df = new_df[new_df['Exec/Non-Exec']==1]
prev_non_exec_df.reset_index(inplace=True)
new_df.reset_index(inplace=True)
#Removing Non-exec sql from data
print(f"Removing {len(gold_not_exec)} non-exec sql query from all Gold/Pred/Debug ")
gold_score1 = remove_data_from_index(gold_score1, gold_exec)
pred_score = remove_data_from_index(pred_score, gold_exec)
# debug_score = remove_data_from_index(debug_score, gold_exec)
gold_score = [[x] for x in gold_score1]
assert len(gold_score) == len(pred_score) #== len(debug_score)
pred_bleu_score = bleu.compute(predictions=pred_score, references=gold_score)
pred_rouge_score = rouge.compute(predictions=pred_score, references=gold_score)
pred_exact_match, pred_partial_f1_score = get_exec_match_acc(gold_score1, pred_score)
print("PREDICTED_vs_GOLD Final bleu_score: ", pred_bleu_score['bleu'])
print("PREDICTED_vs_GOLD Final rouge_score: ", pred_rouge_score['rougeL'])
print("PREDICTED_vs_GOLD Exact Match Accuracy: ", pred_exact_match)
# print("PREDICTED_vs_GOLD Partial CM F1 score: ", pred_partial_f1_score)
print()
new_df.loc[:, 'GOLD_res'] = str(None)
new_df.loc[:, 'PRED_res'] = str(None)
# new_df.loc[:, 'DEBUG_res'] = str(None)
print("Getting Gold results")
# gout_res_dict, gnon_exec_err_dict, gold_sql_map_res = get_exec_results(cur, gold_score1, 'g')
gout_res_dict, gnon_exec_err_dict, new_df = get_exec_results(sqlite_path, gold_score1, new_df, 'g')
total_gold_ok_count, total_gold_none_count = get_total_gold_none_count(gout_res_dict)
print("Total Gold None count: ", total_gold_none_count)
print("Getting Pred results")
pout_res_dict, pnon_exec_err_dict, new_df = get_exec_results(sqlite_path, pred_score, new_df, 'p')
# print("Getting Debug results")
# dout_res_dict, dnon_exec_err_dict = get_exec_results(cur, debug_score, 'd')
print("GOLD Total exec SQL query: {}/{}".format(len(gold_exec), test_size))
print("GOLD Total non-exec SQL query: {}/{}".format(len(gold_not_exec), test_size))
print()
print("PRED Total exec SQL query: {}/{}".format(len(pout_res_dict), len(pred_score)))
print("PRED Total non-exec SQL query: {}/{}".format(len(pnon_exec_err_dict), len(pred_score)))
print()
# print("DEBUG Total exec SQL query: {}/{}".format(len(dout_res_dict), len(debug_score)))
# print("DEBUG Total non-exec SQL query: {}/{}".format(len(dnon_exec_err_dict), len(debug_score)))
# print()
pred_correct_exec_acc_count, pred_incorrect_exec_acc_count, pred_none_count, pred_correct_sql, pred_incorrect_sql = get_scores(gout_res_dict, pout_res_dict)
# debug_correct_exec_acc_count, debug_incorrect_exec_acc_count, debug_none_count, debug_correct_sql, debug_incorrect_sql = get_scores(gout_res_dict, dout_res_dict)
# print("PRED_vs_GOLD None_count: ", total_gold_none_count)
print("PRED_vs_GOLD Correct_Exec_count without None: ", pred_correct_exec_acc_count)
print("PRED_vs_GOLD Incorrect_Exec_count without None: ", pred_incorrect_exec_acc_count)
print("PRED_vs_GOLD Exec_Accuracy: ", pred_correct_exec_acc_count/total_gold_ok_count)
print()
return pred_exact_match, pred_correct_exec_acc_count/total_gold_ok_count, pred_partial_f1_score, pred_bleu_score['bleu'], pred_rouge_score['rougeL']
def add_new_eval(
method_name: str,
url: str,
path_to_file: str,
organisation: str,
mail: str,
):
parsed_mail = input_verification(
method_name,
url,
path_to_file,
organisation,
mail,
)
# load the file
df = pd.read_csv(path_to_file)
submission_df = pd.read_csv(path_to_file)
# modify the df to include metadata
df["Method"] = method_name
df["url"] = url
df["organisation"] = organisation
df["mail"] = parsed_mail
df["timestamp"] = datetime.datetime.now()
submission_df = pd.read_csv(path_to_file)
submission_df["Method"] = method_name
submission_df["Submitted By"] = organisation
# upload to spaces using the hf api at
path_in_repo = f"submissions/{method_name}"
file_name = f"{method_name}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv"
EM, EX, PCM_F1, BLEU, ROUGE = Evaluate(submission_df)
sub_df = pd.DataFrame()
sub_df["Method"] = method_name
sub_df["Submitted By"] = organisation
sub_df['EMA'] = EM
sub_df['EX'] = EX
# submission_df['PCM_F1'] = PCM_F1
sub_df['BLEU-4'] = BLEU
sub_df['ROUGE-L'] = ROUGE
# upload the df to spaces
import io
buffer = io.BytesIO()
df.to_csv(buffer, index=False) # Write the DataFrame to a buffer in CSV format
buffer.seek(0) # Rewind the buffer to the beginning
api.upload_file(
repo_id=RESULTS_PATH,
path_in_repo=f"{path_in_repo}/{file_name}",
path_or_fileobj=buffer,
token=TOKEN,
repo_type="dataset",
)
# read the leaderboard
leaderboard_df = pd.read_csv(f"submissions/baseline/baseline.csv")
# append the new submission_df csv to the leaderboard
# leaderboard_df = leaderboard_df._append(submission_df)
leaderboard_df = pd.concat([leaderboard_df, sub_df], ignore_index=True)
# save the new leaderboard
# leaderboard_df.to_csv(f"submissions/baseline/baseline.csv", index=False)
leaderboard_buffer = io.BytesIO()
leaderboard_df.to_csv(leaderboard_buffer, index=False)
leaderboard_buffer.seek(0)
api.upload_file(
repo_id=LEADERBOARD_PATH,
path_in_repo=f"submissions/baseline/baseline.csv",
path_or_fileobj=leaderboard_buffer,
token=TOKEN,
repo_type="space",
)
return format_log(
f"Method {method_name} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed"
)