|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "forward.h" |
|
#include "auxiliary.h" |
|
#include <cooperative_groups.h> |
|
#include <cooperative_groups/reduce.h> |
|
namespace cg = cooperative_groups; |
|
|
|
|
|
|
|
__device__ glm::vec3 computeColorFromSH(int idx, int deg, int max_coeffs, const glm::vec3* means, glm::vec3 campos, const float* shs, bool* clamped) |
|
{ |
|
|
|
|
|
|
|
glm::vec3 pos = means[idx]; |
|
glm::vec3 dir = pos - campos; |
|
dir = dir / glm::length(dir); |
|
|
|
glm::vec3* sh = ((glm::vec3*)shs) + idx * max_coeffs; |
|
glm::vec3 result = SH_C0 * sh[0]; |
|
|
|
if (deg > 0) |
|
{ |
|
float x = dir.x; |
|
float y = dir.y; |
|
float z = dir.z; |
|
result = result - SH_C1 * y * sh[1] + SH_C1 * z * sh[2] - SH_C1 * x * sh[3]; |
|
|
|
if (deg > 1) |
|
{ |
|
float xx = x * x, yy = y * y, zz = z * z; |
|
float xy = x * y, yz = y * z, xz = x * z; |
|
result = result + |
|
SH_C2[0] * xy * sh[4] + |
|
SH_C2[1] * yz * sh[5] + |
|
SH_C2[2] * (2.0f * zz - xx - yy) * sh[6] + |
|
SH_C2[3] * xz * sh[7] + |
|
SH_C2[4] * (xx - yy) * sh[8]; |
|
|
|
if (deg > 2) |
|
{ |
|
result = result + |
|
SH_C3[0] * y * (3.0f * xx - yy) * sh[9] + |
|
SH_C3[1] * xy * z * sh[10] + |
|
SH_C3[2] * y * (4.0f * zz - xx - yy) * sh[11] + |
|
SH_C3[3] * z * (2.0f * zz - 3.0f * xx - 3.0f * yy) * sh[12] + |
|
SH_C3[4] * x * (4.0f * zz - xx - yy) * sh[13] + |
|
SH_C3[5] * z * (xx - yy) * sh[14] + |
|
SH_C3[6] * x * (xx - 3.0f * yy) * sh[15]; |
|
} |
|
} |
|
} |
|
result += 0.5f; |
|
|
|
|
|
|
|
clamped[3 * idx + 0] = (result.x < 0); |
|
clamped[3 * idx + 1] = (result.y < 0); |
|
clamped[3 * idx + 2] = (result.z < 0); |
|
return glm::max(result, 0.0f); |
|
} |
|
|
|
|
|
__device__ float3 computeCov2D(const float3& mean, float focal_x, float focal_y, float tan_fovx, float tan_fovy, const float* cov3D, const float* viewmatrix) |
|
{ |
|
|
|
|
|
|
|
|
|
float3 t = transformPoint4x3(mean, viewmatrix); |
|
|
|
const float limx = 1.3f * tan_fovx; |
|
const float limy = 1.3f * tan_fovy; |
|
const float txtz = t.x / t.z; |
|
const float tytz = t.y / t.z; |
|
t.x = min(limx, max(-limx, txtz)) * t.z; |
|
t.y = min(limy, max(-limy, tytz)) * t.z; |
|
|
|
glm::mat3 J = glm::mat3( |
|
focal_x / t.z, 0.0f, -(focal_x * t.x) / (t.z * t.z), |
|
0.0f, focal_y / t.z, -(focal_y * t.y) / (t.z * t.z), |
|
0, 0, 0); |
|
|
|
glm::mat3 W = glm::mat3( |
|
viewmatrix[0], viewmatrix[4], viewmatrix[8], |
|
viewmatrix[1], viewmatrix[5], viewmatrix[9], |
|
viewmatrix[2], viewmatrix[6], viewmatrix[10]); |
|
|
|
glm::mat3 T = W * J; |
|
|
|
glm::mat3 Vrk = glm::mat3( |
|
cov3D[0], cov3D[1], cov3D[2], |
|
cov3D[1], cov3D[3], cov3D[4], |
|
cov3D[2], cov3D[4], cov3D[5]); |
|
|
|
glm::mat3 cov = glm::transpose(T) * glm::transpose(Vrk) * T; |
|
|
|
|
|
|
|
cov[0][0] += 0.3f; |
|
cov[1][1] += 0.3f; |
|
return { float(cov[0][0]), float(cov[0][1]), float(cov[1][1]) }; |
|
} |
|
|
|
|
|
|
|
|
|
__device__ void computeCov3D(const glm::vec3 scale, float mod, const glm::vec4 rot, float* cov3D) |
|
{ |
|
|
|
glm::mat3 S = glm::mat3(1.0f); |
|
S[0][0] = mod * scale.x; |
|
S[1][1] = mod * scale.y; |
|
S[2][2] = mod * scale.z; |
|
|
|
|
|
glm::vec4 q = rot; |
|
float r = q.x; |
|
float x = q.y; |
|
float y = q.z; |
|
float z = q.w; |
|
|
|
|
|
glm::mat3 R = glm::mat3( |
|
1.f - 2.f * (y * y + z * z), 2.f * (x * y - r * z), 2.f * (x * z + r * y), |
|
2.f * (x * y + r * z), 1.f - 2.f * (x * x + z * z), 2.f * (y * z - r * x), |
|
2.f * (x * z - r * y), 2.f * (y * z + r * x), 1.f - 2.f * (x * x + y * y) |
|
); |
|
|
|
glm::mat3 M = S * R; |
|
|
|
|
|
glm::mat3 Sigma = glm::transpose(M) * M; |
|
|
|
|
|
cov3D[0] = Sigma[0][0]; |
|
cov3D[1] = Sigma[0][1]; |
|
cov3D[2] = Sigma[0][2]; |
|
cov3D[3] = Sigma[1][1]; |
|
cov3D[4] = Sigma[1][2]; |
|
cov3D[5] = Sigma[2][2]; |
|
} |
|
|
|
|
|
template<int C> |
|
__global__ void preprocessCUDA(int P, int D, int M, |
|
const float* orig_points, |
|
const glm::vec3* scales, |
|
const float scale_modifier, |
|
const glm::vec4* rotations, |
|
const float* opacities, |
|
const float* shs, |
|
bool* clamped, |
|
const float* cov3D_precomp, |
|
const float* colors_precomp, |
|
const float* viewmatrix, |
|
const float* projmatrix, |
|
const glm::vec3* cam_pos, |
|
const int W, int H, |
|
const float tan_fovx, float tan_fovy, |
|
const float focal_x, float focal_y, |
|
int* radii, |
|
float2* points_xy_image, |
|
float* depths, |
|
float* cov3Ds, |
|
float* rgb, |
|
float4* conic_opacity, |
|
const dim3 grid, |
|
uint32_t* tiles_touched, |
|
bool prefiltered) |
|
{ |
|
auto idx = cg::this_grid().thread_rank(); |
|
if (idx >= P) |
|
return; |
|
|
|
|
|
|
|
radii[idx] = 0; |
|
tiles_touched[idx] = 0; |
|
|
|
|
|
float3 p_view; |
|
if (!in_frustum(idx, orig_points, viewmatrix, projmatrix, prefiltered, p_view)) |
|
return; |
|
|
|
|
|
float3 p_orig = { orig_points[3 * idx], orig_points[3 * idx + 1], orig_points[3 * idx + 2] }; |
|
float4 p_hom = transformPoint4x4(p_orig, projmatrix); |
|
float p_w = 1.0f / (p_hom.w + 0.0000001f); |
|
float3 p_proj = { p_hom.x * p_w, p_hom.y * p_w, p_hom.z * p_w }; |
|
|
|
|
|
|
|
const float* cov3D; |
|
if (cov3D_precomp != nullptr) |
|
{ |
|
cov3D = cov3D_precomp + idx * 6; |
|
} |
|
else |
|
{ |
|
computeCov3D(scales[idx], scale_modifier, rotations[idx], cov3Ds + idx * 6); |
|
cov3D = cov3Ds + idx * 6; |
|
} |
|
|
|
|
|
float3 cov = computeCov2D(p_orig, focal_x, focal_y, tan_fovx, tan_fovy, cov3D, viewmatrix); |
|
|
|
|
|
float det = (cov.x * cov.z - cov.y * cov.y); |
|
if (det == 0.0f) |
|
return; |
|
float det_inv = 1.f / det; |
|
float3 conic = { cov.z * det_inv, -cov.y * det_inv, cov.x * det_inv }; |
|
|
|
|
|
|
|
|
|
|
|
float mid = 0.5f * (cov.x + cov.z); |
|
float lambda1 = mid + sqrt(max(0.1f, mid * mid - det)); |
|
float lambda2 = mid - sqrt(max(0.1f, mid * mid - det)); |
|
float my_radius = ceil(3.f * sqrt(max(lambda1, lambda2))); |
|
float2 point_image = { ndc2Pix(p_proj.x, W), ndc2Pix(p_proj.y, H) }; |
|
uint2 rect_min, rect_max; |
|
getRect(point_image, my_radius, rect_min, rect_max, grid); |
|
if ((rect_max.x - rect_min.x) * (rect_max.y - rect_min.y) == 0) |
|
return; |
|
|
|
|
|
|
|
if (colors_precomp == nullptr) |
|
{ |
|
glm::vec3 result = computeColorFromSH(idx, D, M, (glm::vec3*)orig_points, *cam_pos, shs, clamped); |
|
rgb[idx * C + 0] = result.x; |
|
rgb[idx * C + 1] = result.y; |
|
rgb[idx * C + 2] = result.z; |
|
} |
|
|
|
|
|
depths[idx] = p_view.z; |
|
radii[idx] = my_radius; |
|
points_xy_image[idx] = point_image; |
|
|
|
conic_opacity[idx] = { conic.x, conic.y, conic.z, opacities[idx] }; |
|
tiles_touched[idx] = (rect_max.y - rect_min.y) * (rect_max.x - rect_min.x); |
|
} |
|
|
|
|
|
|
|
|
|
template <uint32_t CHANNELS> |
|
__global__ void __launch_bounds__(BLOCK_X * BLOCK_Y) |
|
renderCUDA( |
|
const uint2* __restrict__ ranges, |
|
const uint32_t* __restrict__ point_list, |
|
int W, int H, |
|
const float2* __restrict__ points_xy_image, |
|
const float* __restrict__ features, |
|
const float* __restrict__ depths, |
|
const float4* __restrict__ conic_opacity, |
|
float* __restrict__ out_alpha, |
|
uint32_t* __restrict__ n_contrib, |
|
const float* __restrict__ bg_color, |
|
float* __restrict__ out_color, |
|
float* __restrict__ out_depth) |
|
{ |
|
|
|
auto block = cg::this_thread_block(); |
|
uint32_t horizontal_blocks = (W + BLOCK_X - 1) / BLOCK_X; |
|
uint2 pix_min = { block.group_index().x * BLOCK_X, block.group_index().y * BLOCK_Y }; |
|
uint2 pix_max = { min(pix_min.x + BLOCK_X, W), min(pix_min.y + BLOCK_Y , H) }; |
|
uint2 pix = { pix_min.x + block.thread_index().x, pix_min.y + block.thread_index().y }; |
|
uint32_t pix_id = W * pix.y + pix.x; |
|
float2 pixf = { (float)pix.x, (float)pix.y }; |
|
|
|
|
|
bool inside = pix.x < W&& pix.y < H; |
|
|
|
bool done = !inside; |
|
|
|
|
|
uint2 range = ranges[block.group_index().y * horizontal_blocks + block.group_index().x]; |
|
const int rounds = ((range.y - range.x + BLOCK_SIZE - 1) / BLOCK_SIZE); |
|
int toDo = range.y - range.x; |
|
|
|
|
|
__shared__ int collected_id[BLOCK_SIZE]; |
|
__shared__ float2 collected_xy[BLOCK_SIZE]; |
|
__shared__ float4 collected_conic_opacity[BLOCK_SIZE]; |
|
|
|
|
|
float T = 1.0f; |
|
uint32_t contributor = 0; |
|
uint32_t last_contributor = 0; |
|
float C[CHANNELS] = { 0 }; |
|
float weight = 0; |
|
float D = 0; |
|
|
|
|
|
for (int i = 0; i < rounds; i++, toDo -= BLOCK_SIZE) |
|
{ |
|
|
|
int num_done = __syncthreads_count(done); |
|
if (num_done == BLOCK_SIZE) |
|
break; |
|
|
|
|
|
int progress = i * BLOCK_SIZE + block.thread_rank(); |
|
if (range.x + progress < range.y) |
|
{ |
|
int coll_id = point_list[range.x + progress]; |
|
collected_id[block.thread_rank()] = coll_id; |
|
collected_xy[block.thread_rank()] = points_xy_image[coll_id]; |
|
collected_conic_opacity[block.thread_rank()] = conic_opacity[coll_id]; |
|
} |
|
block.sync(); |
|
|
|
|
|
for (int j = 0; !done && j < min(BLOCK_SIZE, toDo); j++) |
|
{ |
|
|
|
contributor++; |
|
|
|
|
|
|
|
float2 xy = collected_xy[j]; |
|
float2 d = { xy.x - pixf.x, xy.y - pixf.y }; |
|
float4 con_o = collected_conic_opacity[j]; |
|
float power = -0.5f * (con_o.x * d.x * d.x + con_o.z * d.y * d.y) - con_o.y * d.x * d.y; |
|
if (power > 0.0f) |
|
continue; |
|
|
|
|
|
|
|
|
|
|
|
float alpha = min(0.99f, con_o.w * exp(power)); |
|
if (alpha < 1.0f / 255.0f) |
|
continue; |
|
float test_T = T * (1 - alpha); |
|
if (test_T < 0.0001f) |
|
{ |
|
done = true; |
|
continue; |
|
} |
|
|
|
|
|
for (int ch = 0; ch < CHANNELS; ch++) |
|
C[ch] += features[collected_id[j] * CHANNELS + ch] * alpha * T; |
|
weight += alpha * T; |
|
D += depths[collected_id[j]] * alpha * T; |
|
|
|
T = test_T; |
|
|
|
|
|
|
|
last_contributor = contributor; |
|
} |
|
} |
|
|
|
|
|
|
|
if (inside) |
|
{ |
|
n_contrib[pix_id] = last_contributor; |
|
for (int ch = 0; ch < CHANNELS; ch++) |
|
out_color[ch * H * W + pix_id] = C[ch] + T * bg_color[ch]; |
|
out_alpha[pix_id] = weight; |
|
out_depth[pix_id] = D; |
|
} |
|
} |
|
|
|
void FORWARD::render( |
|
const dim3 grid, dim3 block, |
|
const uint2* ranges, |
|
const uint32_t* point_list, |
|
int W, int H, |
|
const float2* means2D, |
|
const float* colors, |
|
const float* depths, |
|
const float4* conic_opacity, |
|
float* out_alpha, |
|
uint32_t* n_contrib, |
|
const float* bg_color, |
|
float* out_color, |
|
float* out_depth) |
|
{ |
|
renderCUDA<NUM_CHANNELS> << <grid, block >> > ( |
|
ranges, |
|
point_list, |
|
W, H, |
|
means2D, |
|
colors, |
|
depths, |
|
conic_opacity, |
|
out_alpha, |
|
n_contrib, |
|
bg_color, |
|
out_color, |
|
out_depth); |
|
} |
|
|
|
void FORWARD::preprocess(int P, int D, int M, |
|
const float* means3D, |
|
const glm::vec3* scales, |
|
const float scale_modifier, |
|
const glm::vec4* rotations, |
|
const float* opacities, |
|
const float* shs, |
|
bool* clamped, |
|
const float* cov3D_precomp, |
|
const float* colors_precomp, |
|
const float* viewmatrix, |
|
const float* projmatrix, |
|
const glm::vec3* cam_pos, |
|
const int W, int H, |
|
const float focal_x, float focal_y, |
|
const float tan_fovx, float tan_fovy, |
|
int* radii, |
|
float2* means2D, |
|
float* depths, |
|
float* cov3Ds, |
|
float* rgb, |
|
float4* conic_opacity, |
|
const dim3 grid, |
|
uint32_t* tiles_touched, |
|
bool prefiltered) |
|
{ |
|
preprocessCUDA<NUM_CHANNELS> << <(P + 255) / 256, 256 >> > ( |
|
P, D, M, |
|
means3D, |
|
scales, |
|
scale_modifier, |
|
rotations, |
|
opacities, |
|
shs, |
|
clamped, |
|
cov3D_precomp, |
|
colors_precomp, |
|
viewmatrix, |
|
projmatrix, |
|
cam_pos, |
|
W, H, |
|
tan_fovx, tan_fovy, |
|
focal_x, focal_y, |
|
radii, |
|
means2D, |
|
depths, |
|
cov3Ds, |
|
rgb, |
|
conic_opacity, |
|
grid, |
|
tiles_touched, |
|
prefiltered |
|
); |
|
} |