Spaces:
Sleeping
Sleeping
import time | |
import wavmark | |
import streamlit as st | |
import os | |
import torch | |
import datetime | |
import numpy as np | |
import soundfile | |
from wavmark.utils import file_reader | |
import subprocess | |
import sys | |
import time | |
def my_read_file(audio_path, max_second): | |
signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr) | |
if audio_length_second > max_second: | |
signal = signal[0:default_sr * max_second] | |
audio_length_second = max_second | |
return signal, sr, audio_length_second | |
def add_watermark(audio_path, watermark_text): | |
#t1 = time.time() | |
assert len(watermark_text) == 16 | |
watermark_npy = np.array([int(i) for i in watermark_text]) | |
signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode) | |
watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False) | |
tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav" | |
tmp_file_path = '/tmp/' + tmp_file_name | |
soundfile.write(tmp_file_path, watermarked_signal, sr) | |
#encode_time_cost = time.time() - t1 | |
return tmp_file_path | |
#def encode_water() | |
def decode_watermark(audio_path): | |
assert os.path.exists(audio_path) | |
#t1 = time.time() | |
signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode) | |
payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False) | |
#decode_cost = time.time() - t1 | |
if payload_decoded is None: | |
#return "No Watermark" , decode_cost | |
return "No Watermark" | |
payload_decoded_str = "".join([str(i) for i in payload_decoded]) | |
st.write("Result:", payload_decoded_str) | |
#st.write("Time Cost:%d seconds" % (decode_cost)) | |
def create_default_value(): | |
if "def_value" not in st.session_state: | |
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit) | |
def_val_str = "".join([str(i) for i in def_val_npy]) | |
st.session_state.def_value = def_val_str | |
def main(): | |
create_default_value() | |
st.title("AudioWaterMarking") | |
markdown_text = """ | |
# Audio WaterMarking | |
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. | |
See [WaveMarktoolkit](https://github.com/wavmark/wavmark) for further details. | |
""" | |
st.markdown(markdown_text) | |
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False) | |
if audio_file: | |
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name) | |
with open(tmp_input_audio_file, "wb") as f: | |
f.write(audio_file.getbuffer()) | |
# st.audio(tmp_input_audio_file, format="audio/wav") | |
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"]) | |
if action == "Add Watermark": | |
watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value) | |
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn") | |
if add_watermark_button: | |
if audio_file and watermark_text: | |
with st.spinner("Adding Watermark..."): | |
#watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text) | |
watermarked_audio = add_watermark(tmp_input_audio_file, watermark_text) | |
st.write("Watermarked Audio:") | |
print("watermarked_audio:", watermarked_audio) | |
st.audio(watermarked_audio, format="audio/wav") | |
#st.write("Time Cost: %d seconds" % encode_time_cost) | |
elif action == "Decode Watermark": | |
if st.button("Decode"): | |
with st.spinner("Decoding..."): | |
decode_watermark(tmp_input_audio_file) | |
if __name__ == "__main__": | |
default_sr = 16000 | |
max_second_encode = 60 | |
max_second_decode = 30 | |
len_start_bit = 16 | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
model = wavmark.load_model().to(device) | |
main() | |