File size: 3,031 Bytes
ab163d2 f722806 ab163d2 f722806 0a4bf92 ab163d2 0a4bf92 ab163d2 f722806 ab163d2 fbff24b 0a4bf92 f722806 ab163d2 575d757 ab163d2 fbff24b 0a4bf92 ab163d2 0695ece ab163d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import pytorch_lightning as pl
import torch
import torch.nn as nn
import utils
from torchvision.models import resnet50
import torch
from monai.transforms import (
Compose, Resize, ResizeWithPadOrCrop,
)
from pytorch_grad_cam import GradCAM
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from io import BytesIO
class ResNet(pl.LightningModule):
def __init__(self):
super().__init__()
self.save_hyperparameters()
backbone = resnet50()
num_input_channel = 1
layer = backbone.conv1
new_layer = nn.Conv2d(
in_channels=num_input_channel,
out_channels=layer.out_channels,
kernel_size=layer.kernel_size,
stride=layer.stride,
padding=layer.padding,
bias=layer.bias,
)
new_layer.weight = nn.Parameter(layer.weight.sum(dim=1, keepdim=True))
backbone.conv1 = new_layer
backbone.fc = nn.Sequential(
nn.Linear(2048, 1024),
nn.ReLU(),
nn.BatchNorm1d(1024),
nn.Dropout(0),
nn.Linear(1024, 2),
)
self.model = backbone
def forward(self, x):
out = self.model(x)
return out
val_transforms_416x628 = Compose(
[
utils.CustomCLAHE(),
Resize(spatial_size=628, mode="bilinear", align_corners=True, size_mode="longest"),
ResizeWithPadOrCrop(spatial_size=(416, 628)),
]
)
checkpoint = torch.load("classification_model.ckpt", map_location=torch.device('cpu'))
model = ResNet()
model.load_state_dict(checkpoint["state_dict"])
model.eval()
def load_and_classify_image(image_path, device):
gpu_model = model.to(device)
image = val_transforms_416x628(image_path)
image = image.unsqueeze(0).to(device)
with torch.no_grad():
prediction = gpu_model(image)
prediction = torch.nn.functional.softmax(prediction, dim=1).squeeze(0)
return prediction.to('cpu'), image.to('cpu')
def make_GradCAM(image, device):
arr = image.numpy().squeeze()
gpu_model = model.to(device)
image = image.to(device)
model.eval()
target_layers = [gpu_model.model.layer4[-1]]
cam = GradCAM(model=gpu_model, target_layers=target_layers)
targets = None
grayscale_cam = cam(
input_tensor=image,
targets=targets,
aug_smooth=False,
eigen_smooth=True,
)
grayscale_cam = grayscale_cam.squeeze()
jet = plt.colormaps.get_cmap("inferno")
newcolors = jet(np.linspace(0, 1, 256))
newcolors[0, :3] = 0
new_jet = mcolors.ListedColormap(newcolors)
plt.figure(figsize=(10, 10))
plt.imshow(arr, cmap='gray')
plt.imshow(grayscale_cam, cmap=new_jet, alpha=0.5)
plt.axis('off')
buffer2 = BytesIO()
plt.savefig(buffer2, format='png', bbox_inches='tight', pad_inches=0)
buffer2.seek(0)
gradcam_image = np.array(Image.open(buffer2)).squeeze()
return gradcam_image
|