File size: 1,438 Bytes
901e379
 
a86b2f7
901e379
 
 
 
 
 
 
 
 
 
 
 
 
a86b2f7
 
 
901e379
 
 
 
 
a86b2f7
901e379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import sys
sys.path.append('.')
sys.path.append('./face_recognition1')
import os
import io
import cv2
import base64
import json
import gradio as gr
import requests
import numpy as np
from io import BytesIO
import configparser
import numpy as np
from PIL import Image

# from face_recognition.match import match_1_1
from face_recognition1.run import match_image


def face_recognition_on_file(file1, file2):
    img1 = cv2.imread(file1)
    img2 = cv2.imread(file2)

    response = match_image(img1, img2)

    return response


with gr.Blocks() as demo:
    gr.Markdown(
        """
    # FacePlugin Online Demo

    """
    )

    with gr.TabItem("Face Recognition"):
        with gr.Row():
            with gr.Column():
                first_input = gr.Image(type='filepath')
                gr.Examples(['images/rec_5.jpg', 'images/rec_1.jpg', 'images/9.png', 'images/rec_3.jpg'],
                            inputs=first_input)
                start_button = gr.Button("Run")
            with gr.Column():
                second_input = gr.Image(type='filepath')
                gr.Examples(['images/rec_6.jpg', 'images/rec_2.jpg', 'images/10.jpg', 'images/rec_4.jpg'],
                            inputs=second_input)

            with gr.Column():
                app_output = [gr.JSON()]

        start_button.click(face_recognition_on_file, inputs=[first_input, second_input], outputs=app_output)

demo.queue().launch(share=True)