|
""" |
|
This code is used to batch detect images in a folder. |
|
""" |
|
|
|
import os |
|
import sys |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
|
|
from face_detect.vision.ssd.config.fd_config import define_img_size |
|
|
|
input_size = 320 |
|
test_device = 'cpu' |
|
net_type = 'slim' |
|
threshold = 0.6 |
|
candidate_size = 1500 |
|
|
|
define_img_size(input_size) |
|
|
|
from face_detect.vision.ssd.mb_tiny_fd import create_mb_tiny_fd, create_mb_tiny_fd_predictor |
|
from face_detect.vision.ssd.mb_tiny_RFB_fd import create_Mb_Tiny_RFB_fd, create_Mb_Tiny_RFB_fd_predictor |
|
|
|
label_path = "./face_recognition/face_detect/models/voc-model-labels.txt" |
|
test_device = test_device |
|
|
|
class_names = [name.strip() for name in open(label_path).readlines()] |
|
if net_type == 'slim': |
|
model_path = "./face_recognition/face_detect/models/pretrained/version-slim-320.pth" |
|
|
|
net = create_mb_tiny_fd(len(class_names), is_test=True, device=test_device) |
|
predictor = create_mb_tiny_fd_predictor(net, candidate_size=candidate_size, device=test_device) |
|
elif net_type == 'RFB': |
|
model_path = "./face_recognition/face_detect/models/pretrained/version-RFB-320.pth" |
|
|
|
net = create_Mb_Tiny_RFB_fd(len(class_names), is_test=True, device=test_device) |
|
predictor = create_Mb_Tiny_RFB_fd_predictor(net, candidate_size=candidate_size, device=test_device) |
|
else: |
|
print("The net type is wrong!") |
|
sys.exit(1) |
|
net.load(model_path) |
|
|
|
def get_face_boundingbox(orig_image): |
|
""" |
|
Description: |
|
In input image, detect face |
|
|
|
Args: |
|
orig_image: input BGR image. |
|
""" |
|
boxes, labels, probs = predictor.predict(cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB), candidate_size / 2, threshold) |
|
|
|
if len(boxes) == 0: |
|
return torch.tensor([]), torch.tensor([]) |
|
|
|
height, width, _ = orig_image.shape |
|
valid_face = np.logical_and( |
|
np.logical_and(boxes[:,0] >= 0, boxes[:,1] >= 0), |
|
np.logical_and(boxes[:,2] < width, boxes[:,3] < height) |
|
) |
|
|
|
boxes = boxes[valid_face] |
|
probs = probs[valid_face] |
|
|
|
return boxes, probs |
|
|