faceplugin's picture
initial commit
901e379
raw
history blame
2.22 kB
"""
This code is used to check the data size distribution in the dataset.
"""
import xml.etree.ElementTree as ET
from math import sqrt as sqrt
import cv2
import matplotlib.pyplot as plt
# sets = [("./data/wider_face_add_lm_10_10", "trainval")]
sets = [("./data/wider_face_add_lm_10_10", "test")]
classes = ['face']
if __name__ == '__main__':
width = []
height = []
for image_set, set in sets:
image_ids = open('{}/ImageSets/Main/{}.txt'.format(image_set, set)).read().strip().split()
for image_id in image_ids:
img_path = '{}/JPEGImages/{}.jpg'.format(image_set, image_id)
label_file = open('{}/Annotations/{}.xml'.format(image_set, image_id))
tree = ET.parse(label_file)
root = tree.getroot()
size = root.find('size')
img_w = int(size.find('width').text)
img_h = int(size.find('height').text)
img = cv2.imread(img_path)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 2:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
xmin = int(xmlbox.find('xmin').text)
ymin = int(xmlbox.find('ymin').text)
xmax = int(xmlbox.find('xmax').text)
ymax = int(xmlbox.find('ymax').text)
w = xmax - xmin
h = ymax - ymin
# img = cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 255, 0), 8)
w_change = (w / img_w) * 320
h_change = (h / img_h) * 240
s = w_change * h_change
if w_change / h_change > 6:
print("{}/{}/{}/{}".format(xmin, xmax, ymin, ymax))
width.append(sqrt(s))
height.append(w_change / h_change)
print(img_path)
# img = cv2.resize(img, (608, 608))
# cv2.imwrite('{}_{}'.format(image_set.split('/')[-1], set), img)
# cv2.waitKey()
plt.plot(width, height, 'ro')
plt.show()