Spaces:
Runtime error
Runtime error
File size: 6,205 Bytes
25ba393 265cdf3 9422171 25ba393 8e810f0 25ba393 8e810f0 92348ee 25ba393 92348ee 25ba393 92348ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import streamlit as st
from PIL import Image
from diffusers import StableDiffusionPipeline, ControlNetModel, DDIMScheduler, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline
from diffusers import DDPMScheduler, DDPMSchedulerV2, PNDMScheduler
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, LlamaTokenizerFast, LlamaForCausalLM
from accelerate import Accelerator
import torch
from peft import PeftModel, LoraConfig, get_peft_model, prepare_model_for_int8_training, prepare_model_for_int8_bf16_training
# Define a dictionary with all available models, schedulers, features, weights, and adapters
model_dict = {
"Stable Diffusion": {
"Models": [
"stabilityai/stable-diffusion-3-medium"
"CompVis/stable-diffusion-v1-4",
"stabilityai/stable-diffusion-2-1",
"runwayml/stable-diffusion-v1-5",
"runwayml/stable-diffusion-inpainting",
"runwayml/stable-diffusion-video-v1-5",
"stabilityai/stable-diffusion-2-base"
],
"Schedulers": [
"DDIMScheduler",
"LMSDiscreteScheduler"
],
"Features": [
"Unconditional image generation",
"Text-to-image",
"Image-to-image",
"Inpainting",
"Text or image-to-video",
"Depth-to-image"
],
"Adapters": [
"ControlNet",
"T2I-Adapter"
],
"Weights": [
"Stable Diffusion XL",
"SDXL Turbo",
"Kandinsky",
"IP-Adapter",
"ControlNet",
"Latent Consistency Model",
"Textual inversion",
"Shap-E",
"DiffEdit",
"Trajectory Consistency Distillation-LoRA",
"Stable Video Diffusion",
"Marigold Computer Vision"
]
},
"Llama": {
"Models": [
"decapoda-research/llama-7b-hf",
"decapoda-research/llama-13b-hf",
"decapoda-research/llama-30b-hf",
"decapoda-research/llama-65b-hf"
],
"Tokenizers": [
"LlamaTokenizerFast"
],
"Features": [
"AutoPipeline",
"Train a diffusion model",
"Load LoRAs for inference",
"Accelerate inference of text-to-image diffusion models",
"LOAD PIPELINES AND ADAPTERS",
"Load community pipelines and components",
"Load schedulers and models",
"Model files and layouts",
"Load adapters",
"Push files to the Hub",
"GENERATIVE TASKS",
"Unconditional image generation",
"Text-to-image",
"Image-to-image",
"Inpainting",
"Text or image-to-video",
"Depth-to-image",
"INFERENCE TECHNIQUES",
"Overview",
"Distributed inference with multiple GPUs",
"Merge LoRAs",
"Scheduler features",
"Pipeline callbacks",
"Reproducible pipelines",
"Controlling image quality",
"Prompt techniques",
"ADVANCED INFERENCE",
"Outpainting",
"SPECIFIC PIPELINE EXAMPLES",
"Stable Diffusion XL",
"SDXL Turbo",
"Kandinsky",
"IP-Adapter",
"ControlNet",
"T2I-Adapter",
"Latent Consistency Model",
"Textual inversion",
"Shap-E",
"DiffEdit",
"Trajectory Consistency Distillation-LoRA",
"Stable Video Diffusion",
"Marigold Computer Vision"
],
"Weights": [
"LoRA weights"
]
}
}
model_type = st.selectbox("Select a model type:", list(model_dict.keys()))
if model_type == "Stable Diffusion":
model = st.selectbox("Select a Stable Diffusion model:", model_dict[model_type]["Models"])
scheduler = st.selectbox("Select a scheduler:", model_dict[model_type]["Schedulers"])
feature = st.selectbox("Select a feature:", model_dict[model_type]["Features"])
adapter = st.selectbox("Select an adapter:", model_dict[model_type]["Adapters"])
weight = st.selectbox("Select a weight:", model_dict[model_type]["Weights"])
if st.button("Generate Images"):
st.write("Generating images...")
pipe = StableDiffusionPipeline.from_pretrained(model)
pipe.scheduler = eval(scheduler)()
if adapter == "ControlNet":
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_openpose")
pipe = pipe.to_controlnet(controlnet)
# Define the prompt and number of images to generate
prompt = st.text_input("Enter a prompt:")
num_images = st.slider("Number of images to generate", min_value=1, max_value=10, value=1)
# Generate the images
images = pipe(prompt, num_images=num_images, guidance_scale=7.5).images
# Display the generated images
cols = st.columns(num_images)
for i, image in enumerate(images):
cols[i].image(image, caption=f"Image {i+1}", use_column_width=True)
if model_type == "Llama":
model = st.selectbox("Select a Llama model:", model_dict[model_type]["Models"])
tokenizer = st.selectbox("Select a tokenizer:", model_dict[model_type]["Tokenizers"])
feature = st.selectbox("Select a feature:", model_dict[model_type]["Features"])
weight = st.selectbox("Select a weight:", model_dict[model_type]["Weights"])
if st.button("Generate Text"):
st.write("Generating text...")
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
model = AutoModelForCausalLM.from_pretrained(model)
input_text = st.text_area("Enter a prompt:")
# Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt")
# Generate the text
output = model.generate(**inputs)
# Decode the generated text
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
st.write("Generated Text:")
st.write(generated_text) |