import gradio as gr import torch from transformers import AutoModel, AutoTokenizer # Load the model model = AutoModel.from_pretrained("openbmb/MiniCPM-V-2", trust_remote_code=True) # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2", trust_remote_code=True) model.eval() # Image and text inputs for the interface image = gr.Image(type="pil", label="Image") question = gr.Textbox(label="Question") # Output for the interface answer = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True) title = "Sudoku Solver by FG" description = "Sudoku Solver using MiniCPM-V-2 model by FG. Upload an image of a sudoku puzzle and ask a question to solve it." # Define the function for solving Sudoku def solve_sudoku(image, question): msgs = [{"role": "user", "content": question}] res = model.chat( image=image, msgs=msgs, tokenizer=tokenizer, sampling=True, temperature=0.7, stream=True, system_prompt="You are an AI assistant specialized in visual content analysis. Given an image and a related question, analyze the image thoroughly and provide a precise and informative answer based on the visible content. Ensure your response is clear, accurate, and directly addresses the question.", ) return "".join(res) # Create the Gradio interface demo = gr.Interface( fn=solve_sudoku, inputs=[image, question], outputs=answer, title=title, description=description, theme="compact", ) # Launch the interface demo.launch(share=True)