Spaces:
Runtime error
Runtime error
Ffftdtd5dtft
commited on
Commit
•
7f18d0d
1
Parent(s):
f33c730
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import matplotlib.pyplot as plt
|
|
7 |
import matplotlib.animation as animation
|
8 |
import time
|
9 |
from tqdm import tqdm
|
10 |
-
from transformers import AutoTokenizer,
|
11 |
from diffusers import DiffusionPipeline
|
12 |
from huggingface_hub import login, HfApi, Repository
|
13 |
from dotenv import load_dotenv
|
@@ -84,7 +84,7 @@ def push_to_hub(local_dir, repo_name):
|
|
84 |
|
85 |
def load_model(model_name):
|
86 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
87 |
-
model =
|
88 |
return tokenizer, model
|
89 |
|
90 |
def train(model, train_loader, eval_loader, args):
|
@@ -195,20 +195,18 @@ def main():
|
|
195 |
|
196 |
# Definir los argumentos de entrenamiento
|
197 |
training_args = TrainingArguments(
|
198 |
-
output_dir="outputs/unified_model",
|
199 |
-
evaluation_strategy="epoch",
|
200 |
-
learning_rate=9e-4,
|
201 |
per_device_train_batch_size=2,
|
202 |
per_device_eval_batch_size=16,
|
203 |
-
num_train_epochs=1,
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
)
|
208 |
|
209 |
# Definir el optimizador
|
210 |
-
optimizer = AdamW(unified_model.parameters(), lr=
|
211 |
|
|
|
212 |
train_losses = []
|
213 |
eval_losses = []
|
214 |
|
|
|
7 |
import matplotlib.animation as animation
|
8 |
import time
|
9 |
from tqdm import tqdm
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
11 |
from diffusers import DiffusionPipeline
|
12 |
from huggingface_hub import login, HfApi, Repository
|
13 |
from dotenv import load_dotenv
|
|
|
84 |
|
85 |
def load_model(model_name):
|
86 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
87 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
88 |
return tokenizer, model
|
89 |
|
90 |
def train(model, train_loader, eval_loader, args):
|
|
|
195 |
|
196 |
# Definir los argumentos de entrenamiento
|
197 |
training_args = TrainingArguments(
|
|
|
|
|
|
|
198 |
per_device_train_batch_size=2,
|
199 |
per_device_eval_batch_size=16,
|
200 |
+
num_train_epochs=1,
|
201 |
+
logging_steps=10,
|
202 |
+
save_steps=10,
|
203 |
+
evaluation_strategy="steps"
|
204 |
)
|
205 |
|
206 |
# Definir el optimizador
|
207 |
+
optimizer = AdamW(unified_model.parameters(), lr=5e-5)
|
208 |
|
209 |
+
# Listas para almacenar las pérdidas
|
210 |
train_losses = []
|
211 |
eval_losses = []
|
212 |
|