FlavioBF commited on
Commit
c0b4e54
1 Parent(s): e0826a8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -13
app.py CHANGED
@@ -7,38 +7,30 @@ from langchain.vectorstores import Chroma
7
  #from langchain.embeddings import OpenAIEmbeddings
8
  #from langchain.llms import OpenAI
9
  from langchain.chains import VectorDBQA
10
-
 
11
 
12
 
13
 
14
 
15
  tokenizer_nlp = AutoTokenizer.from_pretrained("FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model")
16
  model_nlp = AutoModelForQuestionAnswering.from_pretrained("FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model")
17
-
18
-
19
-
20
  #url='https://huggingface.co/FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model/commit/1a9570af077d83fc8a728b0addf8a8bd276e2492'
21
  # Load model directly
22
  #model_name2 = "FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model"
23
  #nlp = pipeline("question-answering", model=model_nlp, tokenizer=tokenizer2)
24
  #nlp = pipeline("fill-mask", model="FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model")
25
 
26
- #persist_directory = 'https://drive.google.com/drive/folders/1jRoIBEzgT3-5Pk9eu9oWkbaUq7GxBAiV?usp=sharing'
27
- persist_directory = 'https://drive.google.com/file/d/1U-isHky75OdYwt0UFjYsDAh4idVyixxM/view?usp=sharing'
28
 
29
  embedding = HuggingFaceEmbeddings()
30
  vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
31
-
32
  # Now we can load the persisted database from disk, and use it as normal.
33
  #vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
34
- qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
35
 
36
  context=qa.run(query)
37
-
38
- context = ""
39
- question = ""
40
-
41
-
42
  #vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db")
43
 
44
  retriever = vectordb.as_retriever()
 
7
  #from langchain.embeddings import OpenAIEmbeddings
8
  #from langchain.llms import OpenAI
9
  from langchain.chains import VectorDBQA
10
+ from langchain.vectorstores import FAISS
11
+ from langchain.embeddings import HuggingFaceEmbeddings
12
 
13
 
14
 
15
 
16
  tokenizer_nlp = AutoTokenizer.from_pretrained("FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model")
17
  model_nlp = AutoModelForQuestionAnswering.from_pretrained("FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model")
 
 
 
18
  #url='https://huggingface.co/FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model/commit/1a9570af077d83fc8a728b0addf8a8bd276e2492'
19
  # Load model directly
20
  #model_name2 = "FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model"
21
  #nlp = pipeline("question-answering", model=model_nlp, tokenizer=tokenizer2)
22
  #nlp = pipeline("fill-mask", model="FlavioBF/multi-qa-mpnet-base-dot-v1_fine_tuned_model")
23
 
24
+ persist_directory = 'https://drive.google.com/drive/folders/1jRoIBEzgT3-5Pk9eu9oWkbaUq7GxBAiV?usp=sharing'
25
+ #persist_directory = 'https://drive.google.com/file/d/1U-isHky75OdYwt0UFjYsDAh4idVyixxM/view?usp=sharing'
26
 
27
  embedding = HuggingFaceEmbeddings()
28
  vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
 
29
  # Now we can load the persisted database from disk, and use it as normal.
30
  #vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding)
31
+ #qa = VectorDBQA.from_chain_type(llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo", openai_api_base=base_path), chain_type="stuff", vectorstore=vectordb)
32
 
33
  context=qa.run(query)
 
 
 
 
 
34
  #vectordb = Chroma.from_documents(documents=all_splits, embedding=embeddings, persist_directory="chroma_db")
35
 
36
  retriever = vectordb.as_retriever()