import os import gradio as gr import numpy as np import torch from InferenceInterfaces.Meta_FastSpeech2 import Meta_FastSpeech2 os.system("pip uninstall -y gradio") os.system("pip install gradio==2.7.5.2") def float2pcm(sig, dtype='int16'): """ https://gist.github.com/HudsonHuang/fbdf8e9af7993fe2a91620d3fb86a182 """ sig = np.asarray(sig) if sig.dtype.kind != 'f': raise TypeError("'sig' must be a float array") dtype = np.dtype(dtype) if dtype.kind not in 'iu': raise TypeError("'dtype' must be an integer type") i = np.iinfo(dtype) abs_max = 2 ** (i.bits - 1) offset = i.min + abs_max return (sig * abs_max + offset).clip(i.min, i.max).astype(dtype) class TTS_Interface: def __init__(self): self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = Meta_FastSpeech2(device=self.device) self.current_speaker = "English Speaker's Voice" self.current_language = "English" self.language_id_lookup = { "English" : "en", "German" : "de", "Greek" : "el", "Spanish" : "es", "Finnish" : "fi", "Russian" : "ru", "Hungarian" : "hu", "Dutch" : "nl", "French" : "fr", 'Polish' : "pl", 'Portuguese': "pt", 'Italian' : "it", } self.speaker_path_lookup = { "English Speaker's Voice" : "reference_audios/english.wav", "German Speaker's Voice" : "reference_audios/german.wav", "Greek Speaker's Voice" : "reference_audios/greek.wav", "Spanish Speaker's Voice" : "reference_audios/spanish.wav", "Finnish Speaker's Voice" : "reference_audios/finnish.wav", "Russian Speaker's Voice" : "reference_audios/russian.wav", "Hungarian Speaker's Voice" : "reference_audios/hungarian.wav", "Dutch Speaker's Voice" : "reference_audios/dutch.wav", "French Speaker's Voice" : "reference_audios/french.wav", "Polish Speaker's Voice" : "reference_audios/polish.flac", "Portuguese Speaker's Voice": "reference_audios/portuguese.flac", "Italian Speaker's Voice" : "reference_audios/italian.flac", } def read(self, prompt, language, speaker): if self.current_language != language: self.model.set_language(self.language_id_lookup[language]) self.current_language = language if self.current_speaker != speaker: self.model.set_utterance_embedding(self.speaker_path_lookup[speaker]) self.current_speaker = speaker wav = self.model(prompt) return 48000, float2pcm(wav.cpu().numpy()) meta_model = TTS_Interface() article = "
This is still a work in progress, models will be exchanged for better ones as soon as they are done. All of those languages are spoken by a single model. Speakers can be transferred across languages. More languages will be added soon.
Click here to learn more about the IMS Toucan Speech Synthesis Toolkit
" iface = gr.Interface(fn=meta_model.read, inputs=[gr.inputs.Textbox(lines=2, placeholder="write what you want the synthesis to read here...", label=" "), gr.inputs.Dropdown(['English', 'German', 'Greek', 'Spanish', 'Finnish', 'Russian', 'Hungarian', 'Dutch', 'French', 'Polish', 'Portuguese', 'Italian'], type="value", default='English', label="Language Selection"), gr.inputs.Dropdown(["English Speaker's Voice", "German Speaker's Voice", "Greek Speaker's Voice", "Spanish Speaker's Voice", "Finnish Speaker's Voice", "Russian Speaker's Voice", "Hungarian Speaker's Voice", "Dutch Speaker's Voice", "French Speaker's Voice", "Polish Speaker's Voice", "Portuguese Speaker's Voice", "Italian Speaker's Voice"], type="value", default="English Speaker's Voice", label="Speaker Selection")], outputs=gr.outputs.Audio(type="numpy", label=None), layout="vertical", title="IMS Toucan Multilingual Multispeaker Demo", thumbnail="Utility/toucan.png", theme="default", allow_flagging="never", allow_screenshot=False, article=article) iface.launch(enable_queue=True)