Spaces:
Running
on
T4
Running
on
T4
import os.path | |
import torch | |
from Preprocessing.multilinguality.create_distance_lookups import CacheCreator | |
from Utility.utils import load_json_from_path | |
class LanguageEmbeddingSpaceStructureLoss(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
cc = CacheCreator(cache_root="Preprocessing/multilinguality") | |
if not os.path.exists('Preprocessing/multilinguality/lang_1_to_lang_2_to_tree_dist.json'): | |
cc.create_tree_cache(cache_root="Preprocessing/multilinguality") | |
if not os.path.exists('Preprocessing/multilinguality/lang_1_to_lang_2_to_tree_dist.json'): | |
cc.create_map_cache(cache_root="Preprocessing/multilinguality") | |
self.tree_dist = load_json_from_path('Preprocessing/multilinguality/lang_1_to_lang_2_to_tree_dist.json') | |
self.map_dist = load_json_from_path('Preprocessing/multilinguality/lang_1_to_lang_2_to_map_dist.json') | |
# with open("Preprocessing/multilinguality/asp_dict.pkl", 'rb') as dictfile: | |
# self.asp_sim = pickle.load(dictfile) | |
# self.lang_list = list(self.asp_sim.keys()) # list of all languages, to get lang_b's index | |
self.largest_value_map_dist = 0.0 | |
for _, values in self.map_dist.items(): | |
for _, value in values.items(): | |
self.largest_value_map_dist = max(self.largest_value_map_dist, value) | |
self.iso_codes_to_ids = load_json_from_path("Preprocessing/multilinguality/iso_lookup.json")[-1] | |
self.ids_to_iso_codes = {v: k for k, v in self.iso_codes_to_ids.items()} | |
def forward(self, language_ids, language_embeddings): | |
""" | |
Args: | |
language_ids (Tensor): IDs of languages in the same order as the embeddings to calculate the distances according to the metrics. | |
language_embeddings (Tensor): Batch of language embeddings, of which the distances will be compared to the distances according to the metrics. | |
Returns: | |
Tensor: Language Embedding Structure Loss Value | |
""" | |
losses = list() | |
for language_id_1, language_embedding_1 in zip(language_ids, language_embeddings): | |
for language_id_2, language_embedding_2 in zip(language_ids, language_embeddings): | |
if language_id_1 != language_id_2: | |
embed_dist = torch.nn.functional.l1_loss(language_embedding_1, language_embedding_2) | |
lang_1 = self.ids_to_iso_codes[language_id_1] | |
lang_2 = self.ids_to_iso_codes[language_id_2] | |
# Value Range Normalized Tree Dist | |
try: | |
tree_dist = self.tree_dist[lang_1][lang_2] | |
except KeyError: | |
tree_dist = self.tree_dist[lang_2][lang_1] | |
# Value Range Normalized Map Dist | |
try: | |
map_dist = self.map_dist[lang_1][lang_2] / self.largest_value_map_dist | |
except KeyError: | |
map_dist = self.map_dist[lang_2][lang_1] / self.largest_value_map_dist | |
# Value Range Normalized ASP Dist | |
# lang_2_idx = self.lang_list.index(lang_2) | |
# asp_dist = 1.0 - self.asp_sim[lang_1][lang_2_idx] # it's a similarity measure that goes from 0 to 1, so we subtract it from 1 to turn it into a distance | |
# Average distance should be similar to embedding distance to bring some structure into the embedding-space | |
# metric_distance = (torch.tensor(tree_dist) + torch.tensor(map_dist) + torch.tensor(asp_dist)) / 3 | |
metric_distance = (torch.tensor(tree_dist) + torch.tensor(map_dist)) / 2 | |
losses.append(torch.nn.functional.l1_loss(embed_dist, metric_distance)) | |
return sum(losses) / len(losses) | |