File size: 9,623 Bytes
f9abe33
 
1c1d081
 
 
 
 
 
 
cdf0274
1c1d081
 
 
 
 
 
 
 
 
12903b1
1c1d081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef2207
12903b1
1c1d081
 
 
 
 
 
 
5ef2207
12903b1
 
 
 
 
 
 
 
 
480ec1d
1c1d081
06c6140
1c1d081
 
 
480ec1d
efd00eb
1c1d081
 
 
 
 
 
 
 
 
 
 
5ef2207
1c1d081
 
2583838
1c1d081
cdf0274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1d081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf0274
1c1d081
4d01ceb
cdf0274
 
 
 
 
eb9c2d1
cdf0274
 
 
eb9c2d1
1c1d081
 
 
 
 
 
 
 
 
 
1d65d71
1c1d081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fe1f75
1c1d081
 
 
9fe1f75
1c1d081
 
 
 
 
 
 
 
 
 
 
 
c044b60
9fe1f75
c044b60
 
 
1c1d081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf0274
 
 
 
 
1c1d081
 
 
 
cdf0274
1c1d081
 
 
 
 
 
 
 
 
cdf0274
1c1d081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf0274
1c1d081
 
cdf0274
 
 
 
 
 
 
1c1d081
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import spaces

import sys
sys.path.append('./')

from diffusers import (
    StableDiffusionPipeline,
    UNet2DConditionModel,
    DPMSolverMultistepScheduler,
    LCMScheduler
)

from arc2face import CLIPTextModelWrapper, project_face_embs

import torch
from insightface.app import FaceAnalysis
from PIL import Image
import numpy as np
import random
#import os

import gradio as gr

# global variable
MAX_SEED = np.iinfo(np.int32).max
if torch.cuda.is_available():
    device = "cuda"
    dtype = torch.float16
else:
    device = "cpu"
    dtype = torch.float32


# download models
from huggingface_hub import hf_hub_download
#from modelscope import snapshot_download
#from modelscope.hub.file_download import model_file_download

hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/config.json", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/diffusion_pytorch_model.safetensors", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/config.json", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/pytorch_model.bin", local_dir="./models")
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arcface.onnx", local_dir="./models/antelopev2")

#base_model = snapshot_download('AI-ModelScope/stable-diffusion-v1-5', cache_dir='./models')
#model_dir = model_file_download(model_id='AI-ModelScope/stable-diffusion-v1-5', file_path='model_index.json', cache_dir='./models')
#base_model = os.path.dirname(model_dir)
#_ = model_file_download(model_id='AI-ModelScope/stable-diffusion-v1-5', file_path='scheduler/scheduler_config.json', cache_dir='./models')
#_ = model_file_download(model_id='AI-ModelScope/stable-diffusion-v1-5', file_path='tokenizer/merges.txt', cache_dir='./models')
#_ = model_file_download(model_id='AI-ModelScope/stable-diffusion-v1-5', file_path='tokenizer/special_tokens_map.json', cache_dir='./models')
#_ = model_file_download(model_id='AI-ModelScope/stable-diffusion-v1-5', file_path='tokenizer/tokenizer_config.json', cache_dir='./models')
#_ = model_file_download(model_id='AI-ModelScope/stable-diffusion-v1-5', file_path='tokenizer/vocab.json', cache_dir='./models')
#_ = model_file_download(model_id='AI-ModelScope/stable-diffusion-v1-5', file_path='vae/config.json', cache_dir='./models')
#_ = model_file_download(model_id='AI-ModelScope/stable-diffusion-v1-5', file_path='vae/diffusion_pytorch_model.safetensors', cache_dir='./models')

# Load face detection and recognition package
app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# Load pipeline
#base_model = 'runwayml/stable-diffusion-v1-5'
base_model = 'stable-diffusion-v1-5/stable-diffusion-v1-5'
encoder = CLIPTextModelWrapper.from_pretrained(
    'models', subfolder="encoder", torch_dtype=dtype
)
unet = UNet2DConditionModel.from_pretrained(
    'models', subfolder="arc2face", torch_dtype=dtype
)
pipeline = StableDiffusionPipeline.from_pretrained(
        base_model,
        text_encoder=encoder,
        unet=unet,
        torch_dtype=dtype,
        safety_checker=None,
    )
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(device)

# load and disable LCM
pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipeline.disable_lora()

def toggle_lcm_ui(value):
    if value:
        return (
            gr.update(minimum=1, maximum=20, step=1, value=3),
            gr.update(minimum=0.1, maximum=10.0, step=0.1, value=1.0),
        )
    else:
        return (
            gr.update(minimum=1, maximum=100, step=1, value=25),
            gr.update(minimum=0.1, maximum=10.0, step=0.1, value=3.0),
        )

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def get_example():
    case = [
        [
            './assets/examples/freeman.jpg',
        ],
        [
            './assets/examples/lily.png',
        ],
        [
            './assets/examples/joacquin.png',
        ],
        [
            './assets/examples/jackie.png',
        ], 
        [
            './assets/examples/freddie.png',
        ],
        [
            './assets/examples/hepburn.png',
        ],
    ]
    return case

def run_example(img_file):
    return generate_image(img_file, 25, 3, 23, 2, False)

@spaces.GPU
def generate_image(image_path, num_steps, guidance_scale, seed, num_images, use_lcm, progress=gr.Progress(track_tqdm=True)):

    if use_lcm:
        pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
        pipeline.enable_lora()
        pipeline.to(device)
    else:
        pipeline.disable_lora()
        pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
        pipeline.to(device)

    if image_path is None:
        raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
    
    img = np.array(Image.open(image_path))[:,:,::-1]

    # Face detection and ID-embedding extraction
    faces = app.get(img)
    
    if len(faces) == 0:
        raise gr.Error(f"Face detection failed! Please try with another image.")
    
    faces = sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # select largest face (if more than one detected)
    id_emb = torch.tensor(faces['embedding'], dtype=dtype)[None].to(device)
    id_emb = id_emb/torch.norm(id_emb, dim=1, keepdim=True)   # normalize embedding
    id_emb = project_face_embs(pipeline, id_emb)    # pass throught the encoder
                    
    generator = torch.Generator(device=device).manual_seed(seed)
    
    print("Start inference...")        
    images = pipeline(
        prompt_embeds=id_emb,
        num_inference_steps=num_steps,
        guidance_scale=guidance_scale, 
        num_images_per_prompt=num_images,
        generator=generator
    ).images

    return images

### Description
title = r"""
<h1>Arc2Face: A Foundation Model for ID-Consistent Human Faces</h1>
"""

description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://arc2face.github.io/' target='_blank'><b>Arc2Face: A Foundation Model for ID-Consistent Human Faces</b></a>.<br>

Steps:<br>
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
2. Click <b>Submit</b> to generate new images of the subject.
"""

Footer = r"""
---
📝 **Citation**
<br>
If you find Arc2Face helpful for your research, please consider citing our paper:
```bibtex
@inproceedings{paraperas2024arc2face,
      title={Arc2Face: A Foundation Model for ID-Consistent Human Faces}, 
      author={Paraperas Papantoniou, Foivos and Lattas, Alexandros and Moschoglou, Stylianos and Deng, Jiankang and Kainz, Bernhard and Zafeiriou, Stefanos},
      booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
      year={2024}
}
```
"""

css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:

    # description
    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            
            # upload face image
            img_file = gr.Image(label="Upload a photo with a face", type="filepath")
            
            submit = gr.Button("Submit", variant="primary")

            use_lcm = gr.Checkbox(
                label="Use LCM-LoRA to accelerate sampling", value=False,
                info="Reduces sampling steps significantly, but may decrease quality.",
            )
            
            with gr.Accordion(open=False, label="Advanced Options"):
                num_steps = gr.Slider( 
                    label="Number of sample steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=25,
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=3.0,
                )
                num_images = gr.Slider(
                    label="Number of output images",
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=2,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")

        submit.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=generate_image,
            inputs=[img_file, num_steps, guidance_scale, seed, num_images, use_lcm],
            outputs=[gallery]
        )

    use_lcm.input(
            fn=toggle_lcm_ui,
            inputs=[use_lcm],
            outputs=[num_steps, guidance_scale],
            queue=False,
        )       
    
    gr.Examples(
        examples=get_example(),
        inputs=[img_file],
        run_on_click=True,
        fn=run_example,
        outputs=[gallery],
    )
    
    gr.Markdown(Footer)

demo.launch()