FoodDesert commited on
Commit
a41a44d
1 Parent(s): e7aeeed

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -65,7 +65,7 @@ Both of these features are extracted from the tag wiki pages, but some valid e62
65
 
66
  Yes. We normalized the favorite counts of each image to a range of 0-9, with 0 being the lowest favcount, and 9 being the highest.
67
  You can include any of these special tags: "score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9"
68
- in your list to bias the output toward artists with higher or lower scoring images. Since they are not real tags, the Unseen Tags section will complain, but you can ignore that.
69
 
70
  ## Are there any other special tricks?
71
 
@@ -134,7 +134,8 @@ def extract_tags(tree):
134
  def _traverse(node):
135
  if isinstance(node, Token) and node.type == '__ANON_1':
136
  tag_position = node.start_pos
137
- tag_text = node.value.strip()
 
138
  tags_with_positions.append((tag_text, tag_position))
139
  elif not isinstance(node, Token):
140
  for child in node.children:
@@ -419,10 +420,8 @@ def find_similar_tags(test_tags, similarity_weight, allow_nsfw_tags):
419
  start_pos = tag_info['start_pos']
420
  end_pos = tag_info['end_pos']
421
 
 
422
 
423
- print(original_tag, modified_tag, start_pos, end_pos)
424
-
425
-
426
  if modified_tag in special_tags:
427
  continue
428
 
@@ -464,7 +463,7 @@ def find_similar_tags(test_tags, similarity_weight, allow_nsfw_tags):
464
  result = sorted(result, key=lambda x: x[1], reverse=True)[:10]
465
  html_content += create_html_tables_for_tags(modified_tag, result, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
466
 
467
- bad_entities.append({"entity":"UNKNOWN", "start":start_pos, "end":end_pos})
468
 
469
  tags_added=True
470
  # If no tags were processed, add a message
@@ -507,6 +506,7 @@ def find_similar_artists(original_tags_string, top_n, similarity_weight, allow_n
507
  unseen_tags_data, bad_entities = find_similar_tags(tag_data, similarity_weight, allow_nsfw_tags)
508
 
509
  bad_tags_illustrated_string = {"text":new_tags_string, "entities":bad_entities}
 
510
 
511
  modified_tags = [tag_info['modified_tag'] for tag_info in tag_data]
512
  X_new_image = vectorizer.transform([','.join(modified_tags + removed_tags)])
@@ -541,7 +541,7 @@ with gr.Blocks() as app:
541
  num_artists = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of artists")
542
  allow_nsfw = gr.Checkbox(label="Allow NSFW Tags", value=False)
543
  with gr.Row():
544
- bad_tags_illustrated_string = gr.HighlightedText()
545
  with gr.Row():
546
  with gr.Column(scale=1):
547
  top_artists = gr.HTML(label="Top Artists", value=create_html_placeholder(title="Top Artists"))
 
65
 
66
  Yes. We normalized the favorite counts of each image to a range of 0-9, with 0 being the lowest favcount, and 9 being the highest.
67
  You can include any of these special tags: "score:0", "score:1", "score:2", "score:3", "score:4", "score:5", "score:6", "score:7", "score:8", "score:9"
68
+ in your list to bias the output toward artists with higher or lower scoring images.
69
 
70
  ## Are there any other special tricks?
71
 
 
134
  def _traverse(node):
135
  if isinstance(node, Token) and node.type == '__ANON_1':
136
  tag_position = node.start_pos
137
+ #tag_text = node.value.strip()
138
+ tag_text = node.value
139
  tags_with_positions.append((tag_text, tag_position))
140
  elif not isinstance(node, Token):
141
  for child in node.children:
 
420
  start_pos = tag_info['start_pos']
421
  end_pos = tag_info['end_pos']
422
 
423
+ #print(original_tag, modified_tag, start_pos, end_pos)
424
 
 
 
 
425
  if modified_tag in special_tags:
426
  continue
427
 
 
463
  result = sorted(result, key=lambda x: x[1], reverse=True)[:10]
464
  html_content += create_html_tables_for_tags(modified_tag, result, find_similar_tags.tag2count, find_similar_tags.tag2idwiki)
465
 
466
+ bad_entities.append({"entity":"*", "start":start_pos, "end":end_pos})
467
 
468
  tags_added=True
469
  # If no tags were processed, add a message
 
506
  unseen_tags_data, bad_entities = find_similar_tags(tag_data, similarity_weight, allow_nsfw_tags)
507
 
508
  bad_tags_illustrated_string = {"text":new_tags_string, "entities":bad_entities}
509
+ #bad_tags_illustrated_string = {"text":original_tags_string, "entities":bad_entities}
510
 
511
  modified_tags = [tag_info['modified_tag'] for tag_info in tag_data]
512
  X_new_image = vectorizer.transform([','.join(modified_tags + removed_tags)])
 
541
  num_artists = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of artists")
542
  allow_nsfw = gr.Checkbox(label="Allow NSFW Tags", value=False)
543
  with gr.Row():
544
+ bad_tags_illustrated_string = gr.HighlightedText(label="Visual depiction of bad tags. Character offsets may be buggy.")
545
  with gr.Row():
546
  with gr.Column(scale=1):
547
  top_artists = gr.HTML(label="Top Artists", value=create_html_placeholder(title="Top Artists"))