File size: 52,417 Bytes
4bfb360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
import contextlib
import time
from enum import IntEnum
from typing import Dict, List, NamedTuple, Optional, Set, Tuple

import numpy as np
import torch
import torch.nn as nn

from vllm.attention import (AttentionMetadata, AttentionMetadataPerStage,
                            get_attn_backend)
from vllm.config import (DeviceConfig, LoadConfig, LoRAConfig, ModelConfig,
                         ParallelConfig, SchedulerConfig, VisionLanguageConfig)
from vllm.distributed import broadcast_tensor_dict, with_pynccl_for_all_reduce
from vllm.distributed.device_communicators import (custom_all_reduce,
                                                   pynccl_utils)
from vllm.logger import init_logger
from vllm.lora.layers import LoRAMapping
from vllm.lora.request import LoRARequest
from vllm.lora.worker_manager import LRUCacheWorkerLoRAManager
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.model_loader import get_model
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import (MultiModalData, SamplerOutput, SequenceData,
                           SequenceGroupMetadata)
from vllm.utils import (CudaMemoryProfiler, async_tensor_h2d, is_hip,
                        is_pin_memory_available, make_tensor_with_pad,
                        maybe_expand_dim)
from serve.gpt_model import GPT_models

logger = init_logger(__name__)

_PAD_SLOT_ID = -1
LORA_WARMUP_RANK = 8
_BATCH_SIZE_ALIGNMENT = 8
# Capture graphs for token size 1, 2, 4, 8, 16, 24, 32, 40, ..., 256.
# NOTE: _get_graph_batch_size needs to be updated if this list is changed.
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
    _BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
]


class PreparePromptMetadata(NamedTuple):
    input_tokens: List[int]
    input_positions: List[int]
    attn_metadata: Optional[AttentionMetadataPerStage]
    prompt_lens: List[int]
    subquery_lens: List[int]
    lora_index_mapping: List[int]
    lora_prompt_mapping: List[int]
    lora_requests: Set[LoRARequest]
    multi_modal_input: Optional[torch.Tensor]
    slot_mapping: List[int]

    @classmethod
    def empty(cls):
        return PreparePromptMetadata(
            input_tokens=[],
            input_positions=[],
            attn_metadata=None,
            prompt_lens=[],
            subquery_lens=[],
            lora_index_mapping=[],
            lora_prompt_mapping=[],
            lora_requests=set(),
            multi_modal_input=None,
            slot_mapping=[],
        )


class PrepareDecodeMetadata(NamedTuple):
    input_tokens: List[int]
    input_positions: List[int]
    attn_metadata: Optional[AttentionMetadata]
    lora_index_mapping: List[int]
    lora_prompt_mapping: List[int]
    lora_requests: Set[LoRARequest]
    slot_mapping: List[int]

    @classmethod
    def empty(cls):
        return PrepareDecodeMetadata(
            input_tokens=[],
            input_positions=[],
            attn_metadata=None,
            lora_index_mapping=[],
            lora_prompt_mapping=[],
            lora_requests=set(),
            slot_mapping=[],
        )


# How batches are constructed.
class BatchType(IntEnum):
    # Every batch is prefill.
    PREFILL = 0
    # Every batch is decode.
    DECODE = 1
    # Batch is a mixture of prefill and decode.
    MIXED = 2


class ModelRunner:

    def __init__(
        self,
        model_config: ModelConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        device_config: DeviceConfig,
        load_config: LoadConfig,
        lora_config: Optional[LoRAConfig],
        kv_cache_dtype: Optional[str] = "auto",
        is_driver_worker: bool = False,
        vision_language_config: Optional[VisionLanguageConfig] = None,
    ):
        self.model_config = model_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.lora_config = lora_config
        self.load_config = load_config
        self.is_driver_worker = is_driver_worker

        # model_config can be None in tests/samplers/test_sampler.py.
        # FIXME(woosuk): This is a hack to make the tests work. Refactor this.
        self.sliding_window = (model_config.get_sliding_window()
                               if model_config is not None else None)
        self.device_config = (device_config
                              if device_config is not None else DeviceConfig())
        self.device = self.device_config.device

        # Set after load_model.
        self.lora_manager: LRUCacheWorkerLoRAManager = None

        self.graph_runners: Dict[int, CUDAGraphRunner] = {}
        self.graph_memory_pool: Optional[Tuple[
            int, int]] = None  # Set during graph capture.

        self.max_context_len_to_capture = (
            self.model_config.max_context_len_to_capture
            if self.model_config is not None else 0)

        self.pin_memory = is_pin_memory_available()
        self.kv_cache_dtype = kv_cache_dtype
        self.vision_language_config = vision_language_config

        self.attn_backend = get_attn_backend(
            self.model_config.dtype if model_config is not None else None)

        # Lazy initialization
        self.model: torch.nn.Module  # Set after load_model
        self.block_size: int  # Set after initial profiling.
        # When using CUDA graph, the input block tables must be padded to
        # max_context_len_to_capture. However, creating the block table in
        # Python can be expensive. To optimize this, we cache the block table
        # in numpy and only copy the actual input content at every iteration.
        # The shape of the cached block table will be
        # (max batch size to capture, max context len to capture / block size).
        self.graph_block_tables: torch.Tensor  # Set after initial profiling.

    def load_model(self, args) -> None:
        with CudaMemoryProfiler() as m:
            precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
            latent_size = args.image_size // args.downsample_size            
            gpt_model = GPT_models[args.gpt_model](
                vocab_size=args.codebook_size,
                block_size=latent_size ** 2,
                num_classes=args.num_classes,
                cls_token_num=args.cls_token_num,
                model_type=args.gpt_type,
                cfg_scale=args.cfg_scale,
            ).to(device='cuda', dtype=precision) # TODO: make device configurable

            checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
            if args.from_fsdp: # fspd
                model_weight = checkpoint
            elif "model" in checkpoint:  # ddp
                model_weight = checkpoint["model"]
            elif "state_dict" in checkpoint:
                model_weight = checkpoint["state_dict"]
            else:
                raise Exception("please check model weight")
            gpt_model.custom_load_state_dict(model_weight)
            gpt_model.eval()
            del checkpoint
            self.model = gpt_model

        self.model_memory_usage = m.consumed_memory
        logger.info(f"Loading model weights took "
                    f"{self.model_memory_usage / float(2**30):.4f} GB")

        if self.lora_config:
            assert hasattr(self.model, "supported_lora_modules"
                           ) and self.model.supported_lora_modules, (
                               "Model does not support LoRA")
            assert hasattr(
                self.model,
                "embedding_modules"), "Model does not have embedding_modules"
            assert hasattr(self.model, "embedding_padding_modules"
                           ), "Model does not have embedding_padding_modules"
            self.lora_manager = LRUCacheWorkerLoRAManager(
                self.scheduler_config.max_num_seqs,
                self.scheduler_config.max_num_batched_tokens, self.vocab_size,
                self.lora_config, self.device, self.model.embedding_modules,
                self.model.embedding_padding_modules)
            self.model = self.lora_manager.create_lora_manager(self.model)

        if self.kv_cache_dtype == "fp8" and is_hip():
            # Currently scaled KV cache is only enabled on ROCm
            if self.model_config.quantization_param_path is not None:
                if callable(getattr(self.model, "load_kv_cache_scales", None)):
                    self.model.load_kv_cache_scales(
                        self.model_config.quantization_param_path)
                else:
                    raise RuntimeError("Using FP8 KV cache and scaling "
                                       "factors provided but model "
                                       f"{self.model.__class__} does not "
                                       "support loading scaling factors.")
            else:
                logger.warn("Using FP8 KV cache but no scaling factors "
                            "provided. Defaulting to scaling factors of 1.0. "
                            "This may lead to less accurate results!")
        elif self.model_config.quantization_param_path is not None:
            logger.warn("KV cache scaling factors provided, "
                        "but the KV cache data type is not FP8. "
                        "KV cache scaling factors will not be used.")

    def set_block_size(self, block_size: int) -> None:
        self.block_size = block_size

        self.graph_block_tables = np.zeros(
            (max(_BATCH_SIZES_TO_CAPTURE), self.get_max_block_per_batch()),
            dtype=np.int32)

    def get_max_block_per_batch(self) -> int:
        block_size = self.block_size
        return (self.max_context_len_to_capture + block_size - 1) // block_size

    def _prepare_prompt(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
    ) -> PreparePromptMetadata:
        input_tokens: List[int] = []
        input_positions: List[int] = []
        slot_mapping: List[int] = []
        lora_index_mapping: List[int] = []
        lora_prompt_mapping: List[int] = []
        lora_requests: Set[LoRARequest] = set()

        prompt_lens: List[int] = []
        context_lens: List[int] = []
        subquery_lens: List[int] = []
        prefix_block_tables: List[List[int]] = []
        multi_modal_input_list: List[torch.Tensor] = []

        if len(seq_group_metadata_list) == 0:
            return PreparePromptMetadata.empty()

        for seq_group_metadata in seq_group_metadata_list:
            assert seq_group_metadata.is_prompt
            seq_ids = list(seq_group_metadata.seq_data.keys())
            assert len(seq_ids) == 1
            seq_id = seq_ids[0]

            computed_block_nums = seq_group_metadata.computed_block_nums
            if (self.scheduler_config is not None
                    and self.scheduler_config.chunked_prefill_enabled
                    and not (computed_block_nums is None
                             or computed_block_nums == [])):
                raise RuntimeError(
                    "chunked prefill cannot be used with prefix caching "
                    "now.")

            token_chunk_size = seq_group_metadata.token_chunk_size
            seq_data = seq_group_metadata.seq_data[seq_id]
            computed_len = seq_data.get_num_computed_tokens()
            # We should use get_len here because in case of preemption
            # it contains output tokens.
            prefill_end = min(seq_data.get_len(),
                              computed_len + token_chunk_size)
            prompt_tokens = seq_data.get_token_ids()[computed_len:prefill_end]
            prompt_len = prefill_end
            prompt_lens.append(prompt_len)

            # NOTE: This only works for oooooooxxx style attention.
            if computed_block_nums is not None and len(
                    computed_block_nums) > 0 and self.sliding_window is None:
                # Prefix is not supported with sliding_window
                computed_len = len(computed_block_nums) * self.block_size
                prompt_tokens = prompt_tokens[computed_len:]
                prefix_block_tables.append(computed_block_nums)
            elif self.scheduler_config.chunked_prefill_enabled:
                if seq_group_metadata.block_tables is not None:
                    # Prefill has chunked before.
                    block_table = seq_group_metadata.block_tables[seq_id]
                    prefix_block_tables.append(block_table)
                else:
                    # The first prefill.
                    prefix_block_tables.append([])
            else:
                prefix_block_tables.append([])
                # Right now, prefill start is always 0. However, this
                # assumption can be changed once chunked prefill is introduced.
                assert computed_len == 0

            # actual prompt lens
            context_lens.append(computed_len)
            subquery_lens.append(prompt_len - computed_len)

            input_tokens.extend(prompt_tokens)
            # NOTE(woosuk): Here we assume that the first token in the prompt
            # is always the first token in the sequence.
            input_positions.extend(list(range(computed_len, prefill_end)))
            lora_id = seq_group_metadata.lora_int_id

            if lora_id > 0:
                lora_requests.add(seq_group_metadata.lora_request)

            lora_index_mapping += [lora_id] * (prompt_len - computed_len)
            lora_prompt_mapping.extend(
                [lora_id] *
                (prompt_len - computed_len
                 if seq_group_metadata.sampling_params.prompt_logprobs else 1))

            if seq_group_metadata.multi_modal_data:
                multi_modal_input_list.append(
                    seq_group_metadata.multi_modal_data.data)

            if seq_group_metadata.block_tables is None:
                # During memory profiling, the block tables are not initialized
                # yet. In this case, we just use a dummy slot mapping.
                slot_mapping.extend([_PAD_SLOT_ID] * prompt_len)
                continue

            # Compute the slot mapping.
            block_table = seq_group_metadata.block_tables[seq_id]
            # Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
            # where start_idx is max(0, prompt_len - sliding_window).
            # For example, if the prompt len is 10, sliding window is 8, and
            # block size is 4, the first two tokens are masked and the slot
            # mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
            start_idx = 0
            if self.sliding_window is not None:
                assert computed_len == 0, (
                    "Prefix caching is currently not supported with "
                    "sliding window attention")
                start_idx = max(0, prompt_len - self.sliding_window)

            for i in range(computed_len, prefill_end):
                if i < start_idx:
                    slot_mapping.append(_PAD_SLOT_ID)
                    continue

                block_number = block_table[i // self.block_size]
                block_offset = i % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)

        max_subquery_len = max(subquery_lens)
        max_prompt_len = max(prompt_lens)
        assert max_subquery_len > 0

        context_lens_tensor = torch.tensor(context_lens,
                                           dtype=torch.int,
                                           device=self.device)

        if multi_modal_input_list:
            assert self.vision_language_config, (
                "Multi-modal inputs are only supported by "
                "vision language models.")
            multi_modal_input = torch.cat(multi_modal_input_list,
                                          dim=0).to(self.device)
        else:
            multi_modal_input = None

        # Prepare prefix block tables
        max_prompt_block_table_len = max(len(t) for t in prefix_block_tables)
        block_tables = make_tensor_with_pad(
            prefix_block_tables,
            max_len=max_prompt_block_table_len,
            pad=0,
            dtype=torch.int,
            device=self.device,
        )

        # Query length can be shorter than key (i.e., prompt) when prefill
        # is chunked or prefix cached.
        subquery_lens_tensor = torch.tensor(subquery_lens,
                                            dtype=torch.long,
                                            device=self.device)
        subquery_start_loc = torch.zeros(subquery_lens_tensor.shape[0] + 1,
                                         dtype=torch.int32,
                                         device=self.device)

        prompt_lens_tensor = torch.tensor(prompt_lens,
                                          dtype=torch.long,
                                          device=self.device)
        seq_start_loc = torch.zeros(prompt_lens_tensor.shape[0] + 1,
                                    dtype=torch.int32,
                                    device=self.device)

        torch.cumsum(subquery_lens_tensor,
                     dim=0,
                     dtype=subquery_start_loc.dtype,
                     out=subquery_start_loc[1:])

        torch.cumsum(prompt_lens_tensor,
                     dim=0,
                     dtype=seq_start_loc.dtype,
                     out=seq_start_loc[1:])

        attn_metadata = self.attn_backend.make_metadata(
            is_prompt=True,
            prompt_lens=prompt_lens,
            prompt_lens_tensor=prompt_lens_tensor,
            max_subquery_len=max_subquery_len,
            max_context_len=None,
            max_prompt_len=max_prompt_len,
            subquery_start_loc=subquery_start_loc,
            seq_start_loc=seq_start_loc,
            context_lens=context_lens_tensor,
            block_tables=block_tables,
            use_cuda_graph=False,
        )

        return PreparePromptMetadata(
            input_tokens=input_tokens,
            input_positions=input_positions,
            attn_metadata=attn_metadata,
            prompt_lens=prompt_lens,
            subquery_lens=subquery_lens,
            lora_index_mapping=lora_index_mapping,
            lora_prompt_mapping=lora_prompt_mapping,
            lora_requests=lora_requests,
            multi_modal_input=multi_modal_input,
            slot_mapping=slot_mapping,
        )

    def _prepare_decode(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
    ) -> PrepareDecodeMetadata:
        input_tokens: List[int] = []
        input_positions: List[int] = []
        slot_mapping: List[int] = []
        context_lens: List[int] = []
        block_tables: List[List[int]] = []
        lora_index_mapping: List[int] = []
        lora_prompt_mapping: List[int] = []
        lora_requests: Set[LoRARequest] = set()

        if len(seq_group_metadata_list) == 0:
            return PrepareDecodeMetadata.empty()

        for seq_group_metadata in seq_group_metadata_list:
            assert not seq_group_metadata.is_prompt
            assert seq_group_metadata.token_chunk_size == 1

            seq_ids = list(seq_group_metadata.seq_data.keys())
            lora_id = seq_group_metadata.lora_int_id

            if lora_id > 0:
                lora_requests.add(seq_group_metadata.lora_request)

            for seq_id in seq_ids:
                seq_data = seq_group_metadata.seq_data[seq_id]
                generation_token = seq_data.get_last_token_id()
                input_tokens.append(generation_token)

                seq_len = seq_data.get_len()
                position = seq_len - 1
                input_positions.append(position)

                context_len = seq_len if self.sliding_window is None else min(
                    seq_len, self.sliding_window)
                context_lens.append(context_len)

                block_table = seq_group_metadata.block_tables[seq_id]
                block_number = block_table[position // self.block_size]
                block_offset = position % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)
                lora_index_mapping.append(lora_id)
                lora_prompt_mapping.append(lora_id)

                if self.sliding_window is not None:
                    sliding_window_blocks = (self.sliding_window //
                                             self.block_size)
                    block_table = block_table[-sliding_window_blocks:]
                block_tables.append(block_table)

        # vLLM uses cuda graph only for decoding requests.
        # See `capture_model` API for more details.
        # For decoding requests, batch_size == input_tokens.
        batch_size = len(input_tokens)
        max_context_len = max(context_lens)
        use_captured_graph = (
            not self.model_config.enforce_eager
            and batch_size <= _BATCH_SIZES_TO_CAPTURE[-1]
            and max_context_len <= self.max_context_len_to_capture)
        if use_captured_graph:
            graph_batch_size = _get_graph_batch_size(batch_size)
            assert graph_batch_size >= batch_size
            for _ in range(graph_batch_size - batch_size):
                input_tokens.append(0)
                input_positions.append(0)
                slot_mapping.append(_PAD_SLOT_ID)
                context_lens.append(1)
                block_tables.append([])
                lora_index_mapping.append(0)
            batch_size = graph_batch_size

        context_lens_tensor = torch.tensor(context_lens,
                                           dtype=torch.int,
                                           device=self.device)

        if use_captured_graph:
            # When using cuda-graph all these tensors should be
            # padded.
            assert context_lens_tensor.shape[0] == len(input_tokens)
            assert context_lens_tensor.shape[0] == len(input_positions)
            assert context_lens_tensor.shape[0] == len(slot_mapping)

            # The shape of graph_block_tables is
            # [max batch size, max context len // block size].
            input_block_tables = self.graph_block_tables[:batch_size]
            for i, block_table in enumerate(block_tables):
                if block_table:
                    input_block_tables[i, :len(block_table)] = block_table
            block_tables = torch.tensor(input_block_tables, device=self.device)
        else:
            max_block_table_len = max(
                len(block_table) for block_table in block_tables)
            block_tables = make_tensor_with_pad(
                block_tables,
                max_len=max_block_table_len,
                pad=0,
                dtype=torch.int,
                device=self.device,
            )

        attn_metadata = self.attn_backend.make_metadata(
            is_prompt=False,
            prompt_lens=None,
            prompt_lens_tensor=None,
            max_subquery_len=None,
            max_context_len=max_context_len,
            max_prompt_len=None,
            subquery_start_loc=None,
            seq_start_loc=None,
            context_lens=context_lens_tensor,
            block_tables=block_tables,
            use_cuda_graph=use_captured_graph,
        )
        return PrepareDecodeMetadata(
            input_tokens=input_tokens,
            input_positions=input_positions,
            attn_metadata=attn_metadata,
            lora_index_mapping=lora_index_mapping,
            lora_prompt_mapping=lora_prompt_mapping,
            lora_requests=lora_requests,
            slot_mapping=slot_mapping,
        )

    def _prepare_sample(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        prompt_lens: List[int],
        subquery_lens: Optional[List[int]],
    ) -> SamplingMetadata:
        seq_groups: List[Tuple[List[int], SamplingParams]] = []
        selected_token_indices: List[int] = []
        generators: List[torch.Generator] = []
        selected_token_start_idx = 0
        categorized_sample_indices: Dict[SamplingType,
                                         List[Tuple[int, int]]] = {
                                             t: []
                                             for t in SamplingType
                                         }
        categorized_sample_indices_start_idx = 0
        categorized_sampled_token_indices_start_idx = 0

        for i, seq_group_metadata in enumerate(seq_group_metadata_list):
            seq_ids = list(seq_group_metadata.seq_data.keys())
            sampling_params = seq_group_metadata.sampling_params
            seq_groups.append((seq_ids, sampling_params))

            if seq_group_metadata.is_prompt:
                assert len(seq_ids) == 1
                assert subquery_lens is not None
                subquery_len = subquery_lens[i]
                if sampling_params.prompt_logprobs is not None:
                    # NOTE: prompt token positions do not need sample, skip
                    categorized_sample_indices_start_idx += subquery_len - 1

                categorized_sample_indices[
                    sampling_params.sampling_type].append(
                        (categorized_sample_indices_start_idx,
                         categorized_sampled_token_indices_start_idx))
                categorized_sample_indices_start_idx += 1
                categorized_sampled_token_indices_start_idx += 1

                if sampling_params.prompt_logprobs is not None:
                    selected_token_indices.extend(
                        range(selected_token_start_idx,
                              selected_token_start_idx + subquery_len - 1))
                selected_token_indices.append(selected_token_start_idx +
                                              subquery_len - 1)
                selected_token_start_idx += subquery_len

                if sampling_params.seed is not None:
                    seq_group_metadata.state.generator = torch.Generator(
                        device=self.device).manual_seed(sampling_params.seed)
            else:
                num_seqs = len(seq_ids)
                selected_token_indices.extend(
                    range(selected_token_start_idx,
                          selected_token_start_idx + num_seqs))
                selected_token_start_idx += num_seqs

                categorized_sample_indices[
                    sampling_params.sampling_type].extend(
                        list(
                            zip(
                                range(
                                    categorized_sample_indices_start_idx,
                                    categorized_sample_indices_start_idx +
                                    num_seqs),
                                range(
                                    categorized_sampled_token_indices_start_idx,
                                    categorized_sampled_token_indices_start_idx
                                    + num_seqs))))
                categorized_sample_indices_start_idx += num_seqs
                categorized_sampled_token_indices_start_idx += num_seqs

            if sampling_params.seed is not None:
                generators.append(seq_group_metadata.state.generator)

        selected_token_indices = async_tensor_h2d(selected_token_indices,
                                                  dtype=torch.long,
                                                  target_device=self.device,
                                                  pin_memory=self.pin_memory)

        categorized_sample_indices = {
            t: maybe_expand_dim(
                async_tensor_h2d(seq_ids,
                                 dtype=torch.int,
                                 target_device=self.device,
                                 pin_memory=self.pin_memory), 2, 2)
            for t, seq_ids in categorized_sample_indices.items()
        }

        seq_data: Dict[int, SequenceData] = {}
        for seq_group_metadata in seq_group_metadata_list:
            seq_data.update(seq_group_metadata.seq_data)

        sampling_metadata = SamplingMetadata(
            seq_groups=seq_groups,
            seq_data=seq_data,
            prompt_lens=prompt_lens,
            selected_token_indices=selected_token_indices,
            categorized_sample_indices=categorized_sample_indices,
            generators=generators,
        )
        return sampling_metadata

    def prepare_input_tensors(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
    ) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, SamplingMetadata,
               Set[LoRARequest], LoRAMapping, torch.Tensor]:
        if self.is_driver_worker:
            prefill_reqs = []
            decode_reqs = []
            for seq_group_meta in seq_group_metadata_list:
                if seq_group_meta.is_prompt:
                    prefill_reqs.append(seq_group_meta)
                else:
                    decode_reqs.append(seq_group_meta)

            # Prepare input tensors.
            (
                input_tokens,
                input_positions,
                prefill_attn_metadata,
                prompt_lens,
                subquery_lens,
                lora_index_mapping,
                lora_prompt_mapping,
                lora_requests,
                multi_modal_input,
                slot_mapping,
            ) = self._prepare_prompt(prefill_reqs)
            (
                decode_input_tokens,
                decode_input_positions,
                decode_attn_metadata,
                decode_lora_index_mapping,
                decode_lora_prompt_mapping,
                decode_lora_requests,
                decode_slot_mapping,
            ) = self._prepare_decode(decode_reqs)
            sampling_metadata = self._prepare_sample(seq_group_metadata_list,
                                                     prompt_lens,
                                                     subquery_lens)

            if not self.scheduler_config.chunked_prefill_enabled:
                assert (len(prefill_reqs) and len(decode_reqs)) == 0

            num_prefills = len(prompt_lens)
            num_prefill_tokens = len(input_tokens)
            num_decode_tokens = len(decode_input_tokens)

            # Coalesce tensors. Note that attn_metadata is currently not
            # coalesced for simplicity.
            input_tokens.extend(decode_input_tokens)
            input_positions.extend(decode_input_positions)
            slot_mapping.extend(decode_slot_mapping)
            lora_index_mapping.extend(decode_lora_index_mapping)
            lora_prompt_mapping.extend(decode_lora_prompt_mapping)
            lora_requests.update(decode_lora_requests)

            input_tokens = torch.tensor(input_tokens,
                                        dtype=torch.long,
                                        device=self.device)
            input_positions = torch.tensor(input_positions,
                                           dtype=torch.long,
                                           device=self.device)
            slot_mapping = torch.tensor(slot_mapping,
                                        dtype=torch.long,
                                        device=self.device)

            if self.lora_config:
                lora_mapping = LoRAMapping(
                    lora_index_mapping,
                    lora_prompt_mapping,
                )
            else:
                lora_mapping = None

            # Broadcast the metadata.
            # If batch contains both prefill and decode, it sends 2 broadcasts.
            # If it only contains 1 type, it triggers a single broadcast.
            if (prefill_attn_metadata is not None
                    and decode_attn_metadata is not None):
                batch_type = BatchType.MIXED
            elif prefill_attn_metadata is not None:
                batch_type = BatchType.PREFILL
            else:
                batch_type = BatchType.DECODE

            metadata_dict = {
                "input_tokens": input_tokens,
                "input_positions": input_positions,
                "selected_token_indices":
                sampling_metadata.selected_token_indices,
                "lora_requests": lora_requests,
                "lora_mapping": lora_mapping,
                "multi_modal_input": multi_modal_input,
                "num_prefill_tokens": num_prefill_tokens,
                "num_decode_tokens": num_decode_tokens,
                "slot_mapping": slot_mapping,
                "num_prefills": num_prefills,
                "batch_type": batch_type,
            }
            if prefill_attn_metadata is not None:
                metadata_dict.update(prefill_attn_metadata.asdict_zerocopy())
            else:
                assert decode_attn_metadata is not None
                metadata_dict.update(decode_attn_metadata.asdict_zerocopy())
            broadcast_tensor_dict(metadata_dict, src=0)

            # Broadcast decode attn metadata for mixed batch type.
            # The additional broadcast costs 300us overhead on 4 A10 GPUs.
            # We can potentially reduce the overhead by coelescing tensors.
            if batch_type == BatchType.MIXED:
                assert decode_attn_metadata is not None
                metadata_dict = decode_attn_metadata.asdict_zerocopy()
                broadcast_tensor_dict(metadata_dict, src=0)
        else:
            metadata_dict = broadcast_tensor_dict(src=0)
            input_tokens = metadata_dict.pop("input_tokens")
            input_positions = metadata_dict.pop("input_positions")
            slot_mapping = metadata_dict.pop("slot_mapping")
            num_prefills = metadata_dict.pop("num_prefills")
            selected_token_indices = metadata_dict.pop(
                "selected_token_indices")
            lora_mapping = metadata_dict.pop("lora_mapping")
            lora_requests = metadata_dict.pop("lora_requests")
            multi_modal_input = metadata_dict.pop("multi_modal_input")
            num_prefill_tokens = metadata_dict.pop("num_prefill_tokens")
            num_decode_tokens = metadata_dict.pop("num_decode_tokens")
            batch_type = metadata_dict.pop("batch_type")

            # Create an attention metadata.
            prefill_attn_metadata = None
            decode_attn_metadata = None
            if batch_type == BatchType.PREFILL or batch_type == BatchType.MIXED:
                prefill_attn_metadata = self.attn_backend.make_metadata(
                    **metadata_dict)
            else:
                decode_attn_metadata = self.attn_backend.make_metadata(
                    **metadata_dict)
            sampling_metadata = SamplingMetadata(
                seq_groups=None,
                seq_data=None,
                prompt_lens=None,
                selected_token_indices=selected_token_indices,
                categorized_sample_indices=None,
                generators=None,
                perform_sampling=False,
            )

            # if it is a mixed batch, decode attn_metadata is broadcasted
            # separately.
            if batch_type == BatchType.MIXED:
                metadata_dict = broadcast_tensor_dict(src=0)
                decode_attn_metadata = self.attn_backend.make_metadata(
                    **metadata_dict)

        attn_metadata = AttentionMetadata(
            num_prefills=num_prefills,
            slot_mapping=slot_mapping,
            num_prefill_tokens=num_prefill_tokens,
            num_decode_tokens=num_decode_tokens,
            prefill_metadata=prefill_attn_metadata,
            decode_metadata=decode_attn_metadata,
            kv_cache_dtype=self.kv_cache_dtype,
        )

        return (input_tokens, input_positions, attn_metadata,
                sampling_metadata, lora_requests, lora_mapping,
                multi_modal_input)

    @torch.inference_mode()
    def execute_model(
        self,
        seq_group_metadata_list: List[SequenceGroupMetadata],
        kv_caches: List[torch.Tensor],
    ) -> Optional[SamplerOutput]:
        (input_tokens, input_positions, attn_metadata, sampling_metadata,
         lora_requests, lora_mapping, multi_modal_input
         ) = self.prepare_input_tensors(seq_group_metadata_list)
        if self.lora_config:
            self.set_active_loras(lora_requests, lora_mapping)

        # Currently cuda graph is only supported by the decode phase.
        prefill_meta = attn_metadata.prefill_metadata
        decode_meta = attn_metadata.decode_metadata
        if prefill_meta is None and decode_meta.use_cuda_graph:
            graph_batch_size = input_tokens.shape[0]
            model_executable = self.graph_runners[graph_batch_size]
        else:
            model_executable = self.model
        execute_model_kwargs = {
            "input_ids": input_tokens,
            "positions": input_positions,
            "kv_caches": kv_caches,
            "attn_metadata": attn_metadata,
        }
        if self.vision_language_config:
            execute_model_kwargs.update({"image_input": multi_modal_input})
        hidden_states = model_executable(**execute_model_kwargs)

        # Compute the logits.
        logits = self.model.compute_logits(hidden_states, sampling_metadata)

        # Only perform sampling in the driver worker.
        if not sampling_metadata.perform_sampling:
            return None

        # Sample the next token.
        output = self.model.sample(
            logits=logits,
            sampling_metadata=sampling_metadata,
        )
        return output

    @torch.inference_mode()
    def profile_run(self) -> None:
        # Enable top-k sampling to reflect the accurate memory usage.
        sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
        max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
        max_num_seqs = self.scheduler_config.max_num_seqs

        # This represents the maximum number of different requests
        # that will have unique loras, an therefore the max amount of memory
        # consumption create dummy lora request copies from the lora request
        # passed in, which contains a lora from the lora warmup path.
        dummy_lora_requests = []
        dummy_lora_requests_per_seq = []
        if self.lora_config:
            for idx in range(self.lora_config.max_loras):
                lora_id = idx + 1
                dummy_lora_request = LoRARequest(
                    lora_name=f"warmup_{lora_id}",
                    lora_int_id=lora_id,
                    lora_local_path="/not/a/real/path",
                )
                self.lora_manager.add_dummy_lora(dummy_lora_request,
                                                 rank=LORA_WARMUP_RANK)
                dummy_lora_requests.append(dummy_lora_request)
            dummy_lora_requests_per_seq = [
                dummy_lora_requests[idx % len(dummy_lora_requests)]
                for idx in range(max_num_seqs)
            ]

        # Profile memory usage with max_num_sequences sequences and the total
        # number of tokens equal to max_num_batched_tokens.
        seqs: List[SequenceGroupMetadata] = []
        # Additional GPU memory may be needed for vision encoding, which needs
        # to be accounted for when calculating the GPU blocks for
        # vLLM blocker manager.
        # To exercise the worst scenario for GPU memory consumption,
        # the number of seqs (batch_size) is chosen to maximize the number
        # of images processed.
        if self.vision_language_config:
            max_num_seqs = min(
                max_num_seqs,
                int(max_num_batched_tokens /
                    self.vision_language_config.image_feature_size))
        for group_id in range(max_num_seqs):
            seq_len = (max_num_batched_tokens // max_num_seqs +
                       (group_id < max_num_batched_tokens % max_num_seqs))
            seq_data, fake_multi_modal_input = _prepare_fake_inputs(
                seq_len, self.vision_language_config)
            seq = SequenceGroupMetadata(
                request_id=str(group_id),
                is_prompt=True,
                seq_data={group_id: seq_data},
                sampling_params=sampling_params,
                block_tables=None,
                lora_request=dummy_lora_requests_per_seq[group_id]
                if dummy_lora_requests_per_seq else None,
                multi_modal_data=fake_multi_modal_input,
            )
            seqs.append(seq)

        # Run the model with the dummy inputs.
        num_layers = self.model_config.get_num_layers(self.parallel_config)
        kv_caches = [None] * num_layers
        self.execute_model(seqs, kv_caches)
        torch.cuda.synchronize()
        return

    def remove_all_loras(self) -> bool:
        if not self.lora_manager:
            raise RuntimeError("LoRA is not enabled.")
        return self.lora_manager.remove_all_loras()

    def set_active_loras(self, lora_requests: Set[LoRARequest],
                         lora_mapping: LoRAMapping) -> None:
        if not self.lora_manager:
            raise RuntimeError("LoRA is not enabled.")
        self.lora_manager.set_active_loras(lora_requests, lora_mapping)

    def add_lora(self, lora_request: LoRARequest) -> bool:
        if not self.lora_manager:
            raise RuntimeError("LoRA is not enabled.")
        return self.lora_manager.add_lora(lora_request)

    def remove_lora(self, lora_id: int) -> bool:
        if not self.lora_manager:
            raise RuntimeError("LoRA is not enabled.")
        return self.lora_manager.remove_lora(lora_id)

    def list_loras(self) -> Set[int]:
        if not self.lora_manager:
            raise RuntimeError("LoRA is not enabled.")
        return self.lora_manager.list_loras()

    @torch.inference_mode()
    def capture_model(self, kv_caches: List[torch.Tensor]) -> None:
        """Cuda graph capture a model.

        Note that CUDA graph's performance gain is negligible if number
        of batched tokens are larger than 200. And since CUDA graph
        requires fixed sized tensors, supporting large/variable batch
        size requires high GPU memory overhead. Thus, vLLM only captures
        decoding requests. Mixed batch (chunked prefill + decoding) or
        prefill requests are not captured.

        Since it is used for decoding-only, it assumes there's only 1 token
        per sequence in the batch.
        """
        # NOTE(woosuk): This is a hack to ensure that the NCCL backend is never
        # deleted before the CUDA graphs.
        self.pynccl_backend = pynccl_utils.get_nccl_backend()

        assert not self.model_config.enforce_eager
        logger.info("Capturing the model for CUDA graphs. This may lead to "
                    "unexpected consequences if the model is not static. To "
                    "run the model in eager mode, set 'enforce_eager=True' or "
                    "use '--enforce-eager' in the CLI.")
        logger.info("CUDA graphs can take additional 1~3 GiB memory per GPU. "
                    "If you are running out of memory, consider decreasing "
                    "`gpu_memory_utilization` or enforcing eager mode. "
                    "You can also reduce the `max_num_seqs` as needed "
                    "to decrease memory usage.")
        start_time = time.perf_counter()

        # Prepare dummy inputs. These will be reused for all batch sizes.
        max_batch_size = max(_BATCH_SIZES_TO_CAPTURE)
        input_tokens = torch.zeros(max_batch_size, dtype=torch.long).cuda()
        input_positions = torch.zeros(max_batch_size, dtype=torch.long).cuda()
        slot_mapping = torch.empty(max_batch_size, dtype=torch.long).cuda()
        slot_mapping.fill_(_PAD_SLOT_ID)
        context_lens = torch.ones(max_batch_size, dtype=torch.int32).cuda()
        block_tables = torch.from_numpy(self.graph_block_tables).cuda()

        graph_batch_size = _get_graph_batch_size(
            self.scheduler_config.max_num_seqs)
        batch_size_capture_list = [
            bs for bs in _BATCH_SIZES_TO_CAPTURE if bs <= graph_batch_size
        ]

        # NOTE(woosuk): There are 3 backends for all-reduce: custom all-reduce
        # kernel, pynccl, and PyTorch NCCL. When using CUDA graph, we use
        # either custom all-reduce kernel or pynccl. When not using CUDA
        # graph, we use either custom all-reduce kernel or PyTorch NCCL.
        # We always prioritize using custom all-reduce kernel but fall back
        # to PyTorch or pynccl if it is disabled or not supported.
        with custom_all_reduce.capture():
            # NOTE: Capturing the largest batch size first may help reduce the
            # memory usage of CUDA graph.
            for batch_size in reversed(batch_size_capture_list):
                # Create dummy attn_metadata.
                decode_metadata = self.attn_backend.make_metadata(
                    is_prompt=False,
                    prompt_lens=None,
                    prompt_lens_tensor=None,
                    max_subquery_len=None,
                    max_context_len=self.max_context_len_to_capture,
                    max_prompt_len=None,
                    subquery_start_loc=None,
                    seq_start_loc=None,
                    context_lens=context_lens[:batch_size],
                    block_tables=block_tables[:batch_size],
                    use_cuda_graph=True,
                )
                attn_metadata = AttentionMetadata(
                    num_prefills=0,
                    num_prefill_tokens=0,
                    num_decode_tokens=batch_size,
                    slot_mapping=slot_mapping[:batch_size],
                    prefill_metadata=None,
                    decode_metadata=decode_metadata,
                    kv_cache_dtype=self.kv_cache_dtype,
                )

                if self.lora_config:
                    lora_mapping = LoRAMapping(
                        [0] * batch_size,
                        [0] * batch_size,
                    )
                    self.set_active_loras(set(), lora_mapping)

                graph_runner = CUDAGraphRunner(self.model)
                graph_runner.capture(
                    input_tokens[:batch_size],
                    input_positions[:batch_size],
                    kv_caches,
                    attn_metadata,
                    memory_pool=self.graph_memory_pool,
                )
                self.graph_memory_pool = graph_runner.graph.pool()
                self.graph_runners[batch_size] = graph_runner

        end_time = time.perf_counter()
        elapsed_time = end_time - start_time
        # This usually takes < 10 seconds.
        logger.info(f"Graph capturing finished in {elapsed_time:.0f} secs.")

    def __del__(self) -> None:
        # Delete the CUDA graphs before deleting the pynccl communicator.
        # NOTE(woosuk): This is necessary because otherwise deadlocks can
        # happen.
        # FIXME(woosuk): This is a bit hacky. Find a more robust solution.
        # TODO(youkaichao): when we get enough user feedback that pynccl is
        # more stable than cupy, we can remove this, e.g. in v0.4.1.
        self.graph_runners.clear()
        self.pynccl_backend = None

    @property
    def vocab_size(self) -> int:
        return self.model_config.get_vocab_size()


class CUDAGraphRunner:

    def __init__(self, model: nn.Module):
        self.model = model
        self.input_buffers: Dict[str, torch.Tensor] = {}
        self.output_buffers: Dict[str, torch.Tensor] = {}

        self._graph: Optional[torch.cuda.CUDAGraph] = None

    @property
    def graph(self):
        assert self._graph is not None
        return self._graph

    def capture(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
        memory_pool,
        **kwargs,
    ) -> None:
        assert self._graph is None
        # Run the model once without capturing the graph.
        # This is to make sure that the captured graph does not include the
        # kernel launches for initial benchmarking (e.g., Triton autotune).
        with _maybe_pynccl():
            self.model(
                input_ids,
                positions,
                kv_caches,
                attn_metadata,
                **kwargs,
            )
        torch.cuda.synchronize()

        # Capture the graph.
        # NOTE(woosuk): Python 3.8 does not support multi-line with statements.
        # https://stackoverflow.com/questions/31039022/python-multi-line-with-statement
        self._graph = torch.cuda.CUDAGraph()
        with torch.cuda.graph(self._graph, pool=memory_pool):  # noqa: SIM117
            with _maybe_pynccl():
                hidden_states = self.model(
                    input_ids,
                    positions,
                    kv_caches,
                    attn_metadata,
                    **kwargs,
                )
        torch.cuda.synchronize()

        # Save the input and output buffers.
        self.input_buffers = {
            "input_ids": input_ids,
            "positions": positions,
            "kv_caches": kv_caches,
            "slot_mapping": attn_metadata.slot_mapping,
            "context_lens": attn_metadata.decode_metadata.context_lens,
            "block_tables": attn_metadata.decode_metadata.block_tables,
        }
        self.output_buffers = {"hidden_states": hidden_states}
        return

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[torch.Tensor],
        attn_metadata: AttentionMetadata,
        **kwargs,
    ) -> torch.Tensor:
        # KV caches are fixed tensors, so we don't need to copy them.
        del kv_caches

        # Copy the input tensors to the input buffers.
        self.input_buffers["input_ids"].copy_(input_ids, non_blocking=True)
        self.input_buffers["positions"].copy_(positions, non_blocking=True)
        self.input_buffers["slot_mapping"].copy_(attn_metadata.slot_mapping,
                                                 non_blocking=True)
        self.input_buffers["context_lens"].copy_(
            attn_metadata.decode_metadata.context_lens, non_blocking=True)
        self.input_buffers["block_tables"].copy_(
            attn_metadata.decode_metadata.block_tables, non_blocking=True)
        # Run the graph.
        self.graph.replay()

        # Return the output tensor.
        return self.output_buffers["hidden_states"]

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)


@contextlib.contextmanager
def _maybe_pynccl():
    if pynccl_utils.is_initialized(
    ) and not custom_all_reduce.is_initialized():
        with with_pynccl_for_all_reduce():
            yield
    else:
        yield


def _get_graph_batch_size(batch_size: int) -> int:
    """Returns the padded batch size given actual batch size.

    Batch sizes are 1, 2, 4, _BATCH_SIZE_ALIGNMENT,
    2*_BATCH_SIZE_ALIGNMENT, 3*_BATCH_SIZE_ALIGNMENT...
    """
    if batch_size <= 2:
        return batch_size
    elif batch_size <= 4:
        return 4
    else:
        return ((batch_size + _BATCH_SIZE_ALIGNMENT - 1) //
                _BATCH_SIZE_ALIGNMENT * _BATCH_SIZE_ALIGNMENT)


def _prepare_fake_inputs(
        seq_len: int, vision_language_config: Optional[VisionLanguageConfig]):
    """Prepare fake inputs for profile run."""
    if vision_language_config:
        prompt_tokens = [
            vision_language_config.image_token_id
        ] * vision_language_config.image_feature_size + [0] * (
            seq_len - vision_language_config.image_feature_size)
        fake_image_input = MultiModalData(
            type=MultiModalData.Type.IMAGE,
            data=torch.zeros(vision_language_config.image_input_shape,
                             dtype=torch.float16))
    else:
        prompt_tokens = [0] * seq_len
        fake_image_input = None
    return SequenceData(prompt_tokens), fake_image_input