Spaces:
Runtime error
Runtime error
import spaces | |
from PIL import Image | |
import gradio as gr | |
from huggingface_hub import hf_hub_download, snapshot_download | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.set_float32_matmul_precision('high') | |
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) | |
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) | |
import os | |
import time | |
import argparse | |
from tokenizer_image.vq_model import VQ_models | |
from models.gpt import GPT_models | |
from models.generate import generate | |
from t5 import T5Embedder | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
device = "cuda" | |
model2ckpt = { | |
"GPT-XL": ("vq_ds16_t2i.pt", "t2i_XL_stage2_512.pt", 512), | |
} | |
def load_model(args): | |
ckpt_folder = './' | |
t5_folder = os.path.join(ckpt_folder, "flan-t5-xl") | |
if not os.path.exists(t5_folder): | |
os.makedirs(t5_folder, exist_ok=True) | |
vq_ckpt, gpt_ckpt, image_size = model2ckpt[args.gpt_model] | |
hf_hub_download(repo_id="peizesun/llamagen_t2i", filename=vq_ckpt, local_dir=ckpt_folder) | |
hf_hub_download(repo_id="peizesun/llamagen_t2i", filename=gpt_ckpt, local_dir=ckpt_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model.bin.index.json", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="special_tokens_map.json", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="spiece.model", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="tokenizer_config.json", local_dir=t5_folder) | |
# create and load model | |
vq_model = VQ_models[args.vq_model]( | |
codebook_size=args.codebook_size, | |
codebook_embed_dim=args.codebook_embed_dim) | |
vq_model.to(device) | |
vq_model.eval() | |
checkpoint = torch.load(f"{ckpt_folder}{vq_ckpt}", map_location="cpu") | |
vq_model.load_state_dict(checkpoint["model"]) | |
del checkpoint | |
print(f"image tokenizer is loaded") | |
# create and load gpt model | |
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] | |
latent_size = image_size // args.downsample_size | |
gpt_model = GPT_models[args.gpt_model]( | |
vocab_size=args.codebook_size, | |
block_size=latent_size ** 2, | |
num_classes=args.num_classes, | |
cls_token_num=args.cls_token_num, | |
model_type=args.gpt_type, | |
).to(device=device, dtype=precision) | |
checkpoint = torch.load(f"{ckpt_folder}{gpt_ckpt}", map_location="cpu") | |
if args.from_fsdp: # fspd | |
model_weight = checkpoint | |
elif "model" in checkpoint: # ddp | |
model_weight = checkpoint["model"] | |
elif "module" in checkpoint: # deepspeed | |
model_weight = checkpoint["module"] | |
elif "state_dict" in checkpoint: | |
model_weight = checkpoint["state_dict"] | |
else: | |
raise Exception("please check model weight") | |
# if 'freqs_cis' in model_weight: | |
# model_weight.pop('freqs_cis') | |
gpt_model.load_state_dict(model_weight, strict=False) | |
gpt_model.eval() | |
del checkpoint | |
print(f"gpt model is loaded") | |
if args.compile: | |
print(f"compiling the model...") | |
gpt_model = torch.compile( | |
gpt_model, | |
mode="reduce-overhead", | |
fullgraph=True | |
) # requires PyTorch 2.0 (optional) | |
else: | |
print(f"no need to compile model in demo") | |
t5_model = T5Embedder( | |
device=device, | |
local_cache=True, | |
cache_dir=ckpt_folder, | |
dir_or_name="flan-t5-xl", | |
torch_dtype=precision, | |
model_max_length=args.t5_feature_max_len, | |
) | |
return t5_model, vq_model, gpt_model, image_size | |
def infer(cfg_scale, top_k, top_p, temperature, prompt, seed): | |
prompts = [prompt for _ in range(4)] | |
caption_embs, emb_masks = t5_model.get_text_embeddings(prompts) | |
if not args.no_left_padding: | |
print(f"processing left-padding...") | |
# a naive way to implement left-padding | |
new_emb_masks = torch.flip(emb_masks, dims=[-1]) | |
new_caption_embs = [] | |
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)): | |
valid_num = int(emb_mask.sum().item()) | |
print(f' prompt {idx} token len: {valid_num}') | |
new_caption_emb = torch.cat([caption_emb[valid_num:], caption_emb[:valid_num]]) | |
new_caption_embs.append(new_caption_emb) | |
new_caption_embs = torch.stack(new_caption_embs) | |
else: | |
new_caption_embs, new_emb_masks = caption_embs, emb_masks | |
c_indices = new_caption_embs * new_emb_masks[:,:, None] | |
c_emb_masks = new_emb_masks | |
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size] | |
t1 = time.time() | |
torch.manual_seed(seed) | |
index_sample = generate( | |
gpt_model, c_indices, latent_size ** 2, | |
c_emb_masks, | |
cfg_scale=cfg_scale, cfg_interval=args.cfg_interval, | |
temperature=temperature, top_k=top_k, | |
top_p=top_p, sample_logits=True, | |
) | |
sampling_time = time.time() - t1 | |
print(f"gpt sampling takes about {sampling_time:.2f} seconds.") | |
t2 = time.time() | |
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1] | |
decoder_time = time.time() - t2 | |
print(f"decoder takes about {decoder_time:.2f} seconds.") | |
# Convert to PIL.Image format: | |
samples = samples.mul(127.5).add_(128.0).clamp_(0, 255).permute(0, 2, 3, 1).to("cpu", torch.uint8).numpy() | |
samples = [Image.fromarray(sample) for sample in samples] | |
return samples | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--t5-path", type=str, default='.') | |
parser.add_argument("--t5-feature-max-len", type=int, default=120) | |
parser.add_argument("--t5-feature-dim", type=int, default=2048) | |
parser.add_argument("--no-left-padding", action='store_true', default=False) | |
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL") | |
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class-conditional or text-conditional") | |
parser.add_argument("--from-fsdp", action='store_true') | |
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input") | |
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) | |
parser.add_argument("--compile", action='store_true', default=False) | |
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") | |
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") | |
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") | |
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) | |
parser.add_argument("--num-classes", type=int, default=1000) | |
parser.add_argument("--cfg-scale", type=float, default=7.5) | |
parser.add_argument("--cfg-interval", type=float, default=-1) | |
parser.add_argument("--seed", type=int, default=0) | |
parser.add_argument("--top-k", type=int, default=2000,help="top-k value to sample with") | |
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with") | |
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with") | |
args = parser.parse_args() | |
t5_model, vq_model, gpt_model, image_size = load_model(args) | |
latent_size = image_size // args.downsample_size | |
examples = [ | |
"A fluffy golden retriever puppy with big, soulful eyes sits in a sunlit garden, surrounded by colorful flowers and butterflies fluttering around its wagging tail.", | |
"A steaming bowl of Pho, filled with translucent rice noodles and thin slices of savory beef, topped with a heaping of fresh bean sprouts, a wedge of lime on the side, and a sprinkle of chopped green onions and cilantro.", | |
"An ethereal black and white landscape, where a solitary, sinuous black tree stands stark against a stark white snowy backdrop. Its branches twist intricately towards the sky, casting dramatic shadows on the untouched snow below.", | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1 style='text-align: center'>Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation</h1><h1 style='text-align: center'>(This is non-vLLM version, vLLM version with <span style='color: red;'>300%-400%</span> speedup is coming soon ! )</h1>") | |
with gr.Tabs(): | |
with gr.TabItem('Generate'): | |
with gr.Row(): | |
with gr.Column(): | |
cfg_scale = gr.Slider(minimum=1, maximum=25, step=0.1, value=7.5, label='Classifier-free Guidance Scale') | |
top_k = gr.Slider(minimum=1, maximum=16384, step=1, value=4000, label='Top-K') | |
top_p = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label="Top-P") | |
temperature = gr.Slider(minimum=0., maximum=1.0, step=0.1, value=1.0, label='Temperature') | |
seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label='Seed') | |
with gr.Row(): | |
text_prompt = gr.Textbox( | |
label="Enter your prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
button = gr.Button("Generate", variant="primary") | |
gr.Examples( | |
label="Examples (select one example, and click Generate button)", | |
examples=examples, | |
inputs=text_prompt, | |
# outputs=[result], | |
# fn=generate, | |
) | |
with gr.Column(): | |
output = gr.Gallery(label='Generated Images', height=700) | |
button.click(infer, inputs=[cfg_scale, top_k, top_p, temperature, text_prompt, seed], outputs=[output]) | |
demo.queue() | |
demo.launch(debug=True, share=True) |