Spaces:
Runtime error
Runtime error
from pathlib import Path | |
import streamlit as st | |
from dotenv import load_dotenv | |
from langchain.chains import LLMChain | |
from langchain.prompts import PromptTemplate | |
load_dotenv() | |
import os | |
from typing import List, Tuple | |
import numpy as np | |
from langchain.chat_models import ChatOpenAI | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.schema import Document | |
from data import load_db | |
from names import DATASET_ID, MODEL_ID | |
from storage import RedisStorage, UserInput | |
from utils import weighted_random_sample | |
class RetrievalType: | |
FIRST_MATCH = "first-match" | |
POOL_MATCHES = "pool-matches" | |
Matches = List[Tuple[Document, float]] | |
USE_STORAGE = os.environ.get("USE_STORAGE", "True").lower() in ("true", "t", "1") | |
print("USE_STORAGE", USE_STORAGE) | |
def init(): | |
embeddings = OpenAIEmbeddings(model=MODEL_ID) | |
dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}" | |
db = load_db( | |
dataset_path, | |
embedding_function=embeddings, | |
token=os.environ["ACTIVELOOP_TOKEN"], | |
# org_id=os.environ["ACTIVELOOP_ORG_ID"], | |
read_only=True, | |
) | |
storage = RedisStorage( | |
host=os.environ["UPSTASH_URL"], password=os.environ["UPSTASH_PASSWORD"] | |
) | |
prompt = PromptTemplate( | |
input_variables=["user_input"], | |
template=Path("prompts/bot.prompt").read_text(), | |
) | |
llm = ChatOpenAI(temperature=0.3) | |
chain = LLMChain(llm=llm, prompt=prompt) | |
return db, storage, chain | |
# Don't show the setting sidebar | |
if "sidebar_state" not in st.session_state: | |
st.session_state.sidebar_state = "collapsed" | |
st.set_page_config(initial_sidebar_state=st.session_state.sidebar_state) | |
db, storage, chain = init() | |
st.title("FairytaleDJ ๐ต๐ฐ๐ฎ") | |
st.markdown( | |
""" | |
*<small>Made with [DeepLake](https://www.deeplake.ai/) ๐ and [LangChain](https://python.langchain.com/en/latest/index.html) ๐ฆโ๏ธ</small>* | |
๐ซ Unleash the magic within you with our enchanting app, turning your sentiments into a Disney soundtrack! ๐ Just express your emotions, and embark on a whimsical journey as we tailor a Disney melody to match your mood. ๐๐""", | |
unsafe_allow_html=True, | |
) | |
how_it_works = st.expander(label="How it works") | |
text_input = st.text_input( | |
label="How are you feeling today?", | |
placeholder="I am ready to rock and rool!", | |
) | |
run_btn = st.button("Make me sing! ๐ถ") | |
with how_it_works: | |
st.markdown( | |
""" | |
The application follows a sequence of steps to deliver Disney songs matching the user's emotions: | |
- **User Input**: The application starts by collecting user's emotional state through a text input. | |
- **Emotion Encoding**: The user-provided emotions are then fed to a Language Model (LLM). The LLM interprets and encodes these emotions. | |
- **Similarity Search**: These encoded emotions are utilized to perform a similarity search within our [vector database](https://www.deeplake.ai/). This database houses Disney songs, each represented as emotional embeddings. | |
- **Song Selection**: From the pool of top matching songs, the application randomly selects one. The selection is weighted, giving preference to songs with higher similarity scores. | |
- **Song Retrieval**: The selected song's embedded player is displayed on the webpage for the user. Additionally, the LLM interpreted emotional state associated with the chosen song is displayed. | |
""" | |
) | |
placeholder_emotions = st.empty() | |
placeholder = st.empty() | |
with st.sidebar: | |
st.text("App settings") | |
filter_threshold = st.slider( | |
"Threshold used to filter out low scoring songs", | |
min_value=0.0, | |
max_value=1.0, | |
value=0.8, | |
) | |
max_number_of_songs = st.slider( | |
"Max number of songs we will retrieve from the db", | |
min_value=5, | |
max_value=50, | |
value=20, | |
step=1, | |
) | |
number_of_displayed_songs = st.slider( | |
"Number of displayed songs", min_value=1, max_value=4, value=2, step=1 | |
) | |
def filter_scores(matches: Matches, th: float = 0.8) -> Matches: | |
return [(doc, score) for (doc, score) in matches if score > th] | |
def normalize_scores_by_sum(matches: Matches) -> Matches: | |
scores = [score for _, score in matches] | |
tot = sum(scores) | |
return [(doc, (score / tot)) for doc, score in matches] | |
def get_song(user_input: str, k: int = 20): | |
emotions = chain.run(user_input=user_input) | |
matches = db.similarity_search_with_score(emotions, distance_metric="cos", k=k) | |
# [print(doc.metadata['name'], score) for doc, score in matches] | |
docs, scores = zip( | |
*normalize_scores_by_sum(filter_scores(matches, filter_threshold)) | |
) | |
choosen_docs = weighted_random_sample( | |
np.array(docs), np.array(scores), n=number_of_displayed_songs | |
).tolist() | |
return choosen_docs, emotions | |
def set_song(user_input): | |
if user_input == "": | |
return | |
# take first 120 chars | |
user_input = user_input[:120] | |
docs, emotions = get_song(user_input, k=max_number_of_songs) | |
print(docs) | |
songs = [] | |
with placeholder_emotions: | |
st.markdown("Your emotions: `" + emotions + "`") | |
with placeholder: | |
iframes_html = "" | |
for doc in docs: | |
name = doc.metadata["name"] | |
print(f"song = {name}") | |
songs.append(name) | |
embed_url = doc.metadata["embed_url"] | |
iframes_html += ( | |
f'<iframe src="{embed_url}" style="border:0;height:100px"> </iframe>' | |
) | |
st.markdown( | |
f"<div style='display:flex;flex-direction:column'>{iframes_html}</div>", | |
unsafe_allow_html=True, | |
) | |
if USE_STORAGE: | |
success_storage = storage.store( | |
UserInput(text=user_input, emotions=emotions, songs=songs) | |
) | |
if not success_storage: | |
print("[ERROR] was not able to store user_input") | |
if run_btn: | |
set_song(text_input) | |