|
import os |
|
from dataclasses import dataclass |
|
from functools import lru_cache |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import GPT2TokenizerFast |
|
|
|
LANGUAGES = { |
|
"en": "english", |
|
"zh": "chinese", |
|
"de": "german", |
|
"es": "spanish", |
|
"ru": "russian", |
|
"ko": "korean", |
|
"fr": "french", |
|
"ja": "japanese", |
|
"pt": "portuguese", |
|
"tr": "turkish", |
|
"pl": "polish", |
|
"ca": "catalan", |
|
"nl": "dutch", |
|
"ar": "arabic", |
|
"sv": "swedish", |
|
"it": "italian", |
|
"id": "indonesian", |
|
"hi": "hindi", |
|
"fi": "finnish", |
|
"vi": "vietnamese", |
|
"he": "hebrew", |
|
"uk": "ukrainian", |
|
"el": "greek", |
|
"ms": "malay", |
|
"cs": "czech", |
|
"ro": "romanian", |
|
"da": "danish", |
|
"hu": "hungarian", |
|
"ta": "tamil", |
|
"no": "norwegian", |
|
"th": "thai", |
|
"ur": "urdu", |
|
"hr": "croatian", |
|
"bg": "bulgarian", |
|
"lt": "lithuanian", |
|
"la": "latin", |
|
"mi": "maori", |
|
"ml": "malayalam", |
|
"cy": "welsh", |
|
"sk": "slovak", |
|
"te": "telugu", |
|
"fa": "persian", |
|
"lv": "latvian", |
|
"bn": "bengali", |
|
"sr": "serbian", |
|
"az": "azerbaijani", |
|
"sl": "slovenian", |
|
"kn": "kannada", |
|
"et": "estonian", |
|
"mk": "macedonian", |
|
"br": "breton", |
|
"eu": "basque", |
|
"is": "icelandic", |
|
"hy": "armenian", |
|
"ne": "nepali", |
|
"mn": "mongolian", |
|
"bs": "bosnian", |
|
"kk": "kazakh", |
|
"sq": "albanian", |
|
"sw": "swahili", |
|
"gl": "galician", |
|
"mr": "marathi", |
|
"pa": "punjabi", |
|
"si": "sinhala", |
|
"km": "khmer", |
|
"sn": "shona", |
|
"yo": "yoruba", |
|
"so": "somali", |
|
"af": "afrikaans", |
|
"oc": "occitan", |
|
"ka": "georgian", |
|
"be": "belarusian", |
|
"tg": "tajik", |
|
"sd": "sindhi", |
|
"gu": "gujarati", |
|
"am": "amharic", |
|
"yi": "yiddish", |
|
"lo": "lao", |
|
"uz": "uzbek", |
|
"fo": "faroese", |
|
"ht": "haitian creole", |
|
"ps": "pashto", |
|
"tk": "turkmen", |
|
"nn": "nynorsk", |
|
"mt": "maltese", |
|
"sa": "sanskrit", |
|
"lb": "luxembourgish", |
|
"my": "myanmar", |
|
"bo": "tibetan", |
|
"tl": "tagalog", |
|
"mg": "malagasy", |
|
"as": "assamese", |
|
"tt": "tatar", |
|
"haw": "hawaiian", |
|
"ln": "lingala", |
|
"ha": "hausa", |
|
"ba": "bashkir", |
|
"jw": "javanese", |
|
"su": "sundanese", |
|
} |
|
|
|
|
|
TO_LANGUAGE_CODE = { |
|
**{language: code for code, language in LANGUAGES.items()}, |
|
"burmese": "my", |
|
"valencian": "ca", |
|
"flemish": "nl", |
|
"haitian": "ht", |
|
"letzeburgesch": "lb", |
|
"pushto": "ps", |
|
"panjabi": "pa", |
|
"moldavian": "ro", |
|
"moldovan": "ro", |
|
"sinhalese": "si", |
|
"castilian": "es", |
|
} |
|
|
|
|
|
@dataclass(frozen=True) |
|
class Tokenizer: |
|
"""A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens""" |
|
|
|
tokenizer: "GPT2TokenizerFast" |
|
language: Optional[str] |
|
sot_sequence: Tuple[int] |
|
|
|
def encode(self, text, **kwargs): |
|
return self.tokenizer.encode(text, **kwargs) |
|
|
|
def decode(self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs): |
|
return self.tokenizer.decode(token_ids, **kwargs) |
|
|
|
def decode_with_timestamps(self, tokens) -> str: |
|
""" |
|
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. |
|
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>". |
|
""" |
|
outputs = [[]] |
|
for token in tokens: |
|
if token >= self.timestamp_begin: |
|
timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>" |
|
outputs.append(timestamp) |
|
outputs.append([]) |
|
else: |
|
outputs[-1].append(token) |
|
outputs = [s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs] |
|
return "".join(outputs) |
|
|
|
@property |
|
@lru_cache() |
|
def eot(self) -> int: |
|
return self.tokenizer.eos_token_id |
|
|
|
@property |
|
@lru_cache() |
|
def sot(self) -> int: |
|
return self._get_single_token_id("<|startoftranscript|>") |
|
|
|
@property |
|
@lru_cache() |
|
def sot_lm(self) -> int: |
|
return self._get_single_token_id("<|startoflm|>") |
|
|
|
@property |
|
@lru_cache() |
|
def sot_prev(self) -> int: |
|
return self._get_single_token_id("<|startofprev|>") |
|
|
|
@property |
|
@lru_cache() |
|
def no_speech(self) -> int: |
|
return self._get_single_token_id("<|nospeech|>") |
|
|
|
@property |
|
@lru_cache() |
|
def no_timestamps(self) -> int: |
|
return self._get_single_token_id("<|notimestamps|>") |
|
|
|
@property |
|
@lru_cache() |
|
def timestamp_begin(self) -> int: |
|
return self.tokenizer.all_special_ids[-1] + 1 |
|
|
|
@property |
|
@lru_cache() |
|
def language_token(self) -> int: |
|
"""Returns the token id corresponding to the value of the `language` field""" |
|
if self.language is None: |
|
raise ValueError(f"This tokenizer does not have language token configured") |
|
|
|
additional_tokens = dict( |
|
zip( |
|
self.tokenizer.additional_special_tokens, |
|
self.tokenizer.additional_special_tokens_ids, |
|
) |
|
) |
|
candidate = f"<|{self.language}|>" |
|
if candidate in additional_tokens: |
|
return additional_tokens[candidate] |
|
|
|
raise KeyError(f"Language {self.language} not found in tokenizer.") |
|
|
|
@property |
|
@lru_cache() |
|
def all_language_tokens(self) -> Tuple[int]: |
|
result = [] |
|
for token, token_id in zip( |
|
self.tokenizer.additional_special_tokens, |
|
self.tokenizer.additional_special_tokens_ids, |
|
): |
|
if token.strip("<|>") in LANGUAGES: |
|
result.append(token_id) |
|
return tuple(result) |
|
|
|
@property |
|
@lru_cache() |
|
def all_language_codes(self) -> Tuple[str]: |
|
return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens) |
|
|
|
@property |
|
@lru_cache() |
|
def sot_sequence_including_notimestamps(self) -> Tuple[int]: |
|
return tuple(list(self.sot_sequence) + [self.no_timestamps]) |
|
|
|
@property |
|
@lru_cache() |
|
def non_speech_tokens(self) -> Tuple[int]: |
|
""" |
|
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech |
|
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g. |
|
|
|
- ♪♪♪ |
|
- ( SPEAKING FOREIGN LANGUAGE ) |
|
- [DAVID] Hey there, |
|
|
|
keeping basic punctuations like commas, periods, question marks, exclamation points, etc. |
|
""" |
|
symbols = list("\"#()*+/:;<=>@[\\]^_`{|}~「」『』") |
|
symbols += "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split() |
|
|
|
|
|
|
|
|
|
|
|
miscellaneous = set("♩♪♫♬♭♮♯") |
|
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous) |
|
|
|
|
|
result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]} |
|
for symbol in symbols + list(miscellaneous): |
|
for tokens in [self.tokenizer.encode(symbol), self.tokenizer.encode(" " + symbol)]: |
|
if len(tokens) == 1 or symbol in miscellaneous: |
|
result.add(tokens[0]) |
|
|
|
return tuple(sorted(result)) |
|
|
|
def _get_single_token_id(self, text) -> int: |
|
tokens = self.tokenizer.encode(text) |
|
assert len(tokens) == 1, f"{text} is not encoded as a single token" |
|
return tokens[0] |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def build_tokenizer(name: str = "gpt2"): |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
path = os.path.join(os.path.dirname(__file__), "assets", name) |
|
tokenizer = GPT2TokenizerFast.from_pretrained(path) |
|
|
|
specials = [ |
|
"<|startoftranscript|>", |
|
*[f"<|{lang}|>" for lang in LANGUAGES.keys()], |
|
"<|translate|>", |
|
"<|transcribe|>", |
|
"<|startoflm|>", |
|
"<|startofprev|>", |
|
"<|nospeech|>", |
|
"<|notimestamps|>", |
|
] |
|
|
|
tokenizer.add_special_tokens(dict(additional_special_tokens=specials)) |
|
return tokenizer |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def get_tokenizer( |
|
multilingual: bool, |
|
*, |
|
task: Optional[str] = None, |
|
language: Optional[str] = None, |
|
) -> Tokenizer: |
|
if language is not None: |
|
language = language.lower() |
|
if language not in LANGUAGES: |
|
if language in TO_LANGUAGE_CODE: |
|
language = TO_LANGUAGE_CODE[language] |
|
else: |
|
raise ValueError(f"Unsupported language: {language}") |
|
|
|
if multilingual: |
|
tokenizer_name = "multilingual" |
|
task = task or "transcribe" |
|
language = language or "en" |
|
else: |
|
tokenizer_name = "gpt2" |
|
task = None |
|
language = None |
|
|
|
tokenizer = build_tokenizer(name=tokenizer_name) |
|
all_special_ids: List[int] = tokenizer.all_special_ids |
|
sot: int = all_special_ids[1] |
|
translate: int = all_special_ids[-6] |
|
transcribe: int = all_special_ids[-5] |
|
|
|
langs = tuple(LANGUAGES.keys()) |
|
sot_sequence = [sot] |
|
if language is not None: |
|
sot_sequence.append(sot + 1 + langs.index(language)) |
|
if task is not None: |
|
sot_sequence.append(transcribe if task == "transcribe" else translate) |
|
|
|
return Tokenizer(tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence)) |
|
|