|
import os |
|
import glob |
|
import re |
|
import sys |
|
import argparse |
|
import logging |
|
import json |
|
import subprocess |
|
import warnings |
|
import random |
|
import functools |
|
|
|
import librosa |
|
import numpy as np |
|
from scipy.io.wavfile import read |
|
import torch |
|
from torch.nn import functional as F |
|
from modules.commons import sequence_mask |
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.WARN) |
|
logger = logging |
|
|
|
f0_bin = 256 |
|
f0_max = 1100.0 |
|
f0_min = 50.0 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
def normalize_f0(f0, x_mask, uv, random_scale=True): |
|
|
|
uv_sum = torch.sum(uv, dim=1, keepdim=True) |
|
uv_sum[uv_sum == 0] = 9999 |
|
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum |
|
|
|
if random_scale: |
|
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device) |
|
else: |
|
factor = torch.ones(f0.shape[0], 1).to(f0.device) |
|
|
|
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) |
|
if torch.isnan(f0_norm).any(): |
|
exit(0) |
|
return f0_norm * x_mask |
|
|
|
def plot_data_to_numpy(x, y): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger('matplotlib') |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
plt.plot(x) |
|
plt.plot(y) |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def f0_to_coarse(f0): |
|
is_torch = isinstance(f0, torch.Tensor) |
|
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 |
|
|
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 |
|
f0_coarse = (f0_mel + 0.5).int() if is_torch else np.rint(f0_mel).astype(np.int) |
|
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) |
|
return f0_coarse |
|
|
|
def get_content(cmodel, y): |
|
with torch.no_grad(): |
|
c = cmodel.extract_features(y.squeeze(1))[0] |
|
c = c.transpose(1, 2) |
|
return c |
|
|
|
def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs): |
|
if f0_predictor == "pm": |
|
from modules.F0Predictor.PMF0Predictor import PMF0Predictor |
|
f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate) |
|
elif f0_predictor == "crepe": |
|
from modules.F0Predictor.CrepeF0Predictor import CrepeF0Predictor |
|
f0_predictor_object = CrepeF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,device=kargs["device"],threshold=kargs["threshold"]) |
|
elif f0_predictor == "harvest": |
|
from modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor |
|
f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate) |
|
elif f0_predictor == "dio": |
|
from modules.F0Predictor.DioF0Predictor import DioF0Predictor |
|
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate) |
|
else: |
|
raise Exception("Unknown f0 predictor") |
|
return f0_predictor_object |
|
|
|
def get_speech_encoder(speech_encoder,device=None,**kargs): |
|
if speech_encoder == "vec768l12": |
|
from vencoder.ContentVec768L12 import ContentVec768L12 |
|
speech_encoder_object = ContentVec768L12(device = device) |
|
elif speech_encoder == "vec256l9": |
|
from vencoder.ContentVec256L9 import ContentVec256L9 |
|
speech_encoder_object = ContentVec256L9(device = device) |
|
elif speech_encoder == "vec256l9-onnx": |
|
from vencoder.ContentVec256L9_Onnx import ContentVec256L9_Onnx |
|
speech_encoder_object = ContentVec256L9(device = device) |
|
elif speech_encoder == "vec256l12-onnx": |
|
from vencoder.ContentVec256L12_Onnx import ContentVec256L12_Onnx |
|
speech_encoder_object = ContentVec256L9(device = device) |
|
elif speech_encoder == "vec768l9-onnx": |
|
from vencoder.ContentVec768L9_Onnx import ContentVec768L9_Onnx |
|
speech_encoder_object = ContentVec256L9(device = device) |
|
elif speech_encoder == "vec768l12-onnx": |
|
from vencoder.ContentVec768L12_Onnx import ContentVec768L12_Onnx |
|
speech_encoder_object = ContentVec256L9(device = device) |
|
elif speech_encoder == "hubertsoft-onnx": |
|
from vencoder.HubertSoft_Onnx import HubertSoft_Onnx |
|
speech_encoder_object = HubertSoft(device = device) |
|
elif speech_encoder == "hubertsoft": |
|
from vencoder.HubertSoft import HubertSoft |
|
speech_encoder_object = HubertSoft(device = device) |
|
elif speech_encoder == "whisper-ppg": |
|
from vencoder.WhisperPPG import WhisperPPG |
|
speech_encoder_object = WhisperPPG(device = device) |
|
else: |
|
raise Exception("Unknown speech encoder") |
|
return speech_encoder_object |
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
iteration = checkpoint_dict['iteration'] |
|
learning_rate = checkpoint_dict['learning_rate'] |
|
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None: |
|
optimizer.load_state_dict(checkpoint_dict['optimizer']) |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
|
|
|
|
new_state_dict[k] = saved_state_dict[k] |
|
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape) |
|
except: |
|
print("error, %s is not in the checkpoint" % k) |
|
logger.info("%s is not in the checkpoint" % k) |
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict) |
|
else: |
|
model.load_state_dict(new_state_dict) |
|
print("load ") |
|
logger.info("Loaded checkpoint '{}' (iteration {})".format( |
|
checkpoint_path, iteration)) |
|
return model, optimizer, learning_rate, iteration |
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): |
|
logger.info("Saving model and optimizer state at iteration {} to {}".format( |
|
iteration, checkpoint_path)) |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
torch.save({'model': state_dict, |
|
'iteration': iteration, |
|
'optimizer': optimizer.state_dict(), |
|
'learning_rate': learning_rate}, checkpoint_path) |
|
|
|
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True): |
|
"""Freeing up space by deleting saved ckpts |
|
|
|
Arguments: |
|
path_to_models -- Path to the model directory |
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth |
|
sort_by_time -- True -> chronologically delete ckpts |
|
False -> lexicographically delete ckpts |
|
""" |
|
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))] |
|
name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1))) |
|
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))) |
|
sort_key = time_key if sort_by_time else name_key |
|
x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key) |
|
to_del = [os.path.join(path_to_models, fn) for fn in |
|
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])] |
|
del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}") |
|
del_routine = lambda x: [os.remove(x), del_info(x)] |
|
rs = [del_routine(fn) for fn in to_del] |
|
|
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): |
|
for k, v in scalars.items(): |
|
writer.add_scalar(k, v, global_step) |
|
for k, v in histograms.items(): |
|
writer.add_histogram(k, v, global_step) |
|
for k, v in images.items(): |
|
writer.add_image(k, v, global_step, dataformats='HWC') |
|
for k, v in audios.items(): |
|
writer.add_audio(k, v, global_step, audio_sampling_rate) |
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"): |
|
f_list = glob.glob(os.path.join(dir_path, regex)) |
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) |
|
x = f_list[-1] |
|
print(x) |
|
return x |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger('matplotlib') |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(10,2)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", |
|
interpolation='none') |
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger('matplotlib') |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', |
|
interpolation='none') |
|
fig.colorbar(im, ax=ax) |
|
xlabel = 'Decoder timestep' |
|
if info is not None: |
|
xlabel += '\n\n' + info |
|
plt.xlabel(xlabel) |
|
plt.ylabel('Encoder timestep') |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def load_wav_to_torch(full_path): |
|
sampling_rate, data = read(full_path) |
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate |
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"): |
|
with open(filename, encoding='utf-8') as f: |
|
filepaths_and_text = [line.strip().split(split) for line in f] |
|
return filepaths_and_text |
|
|
|
|
|
def get_hparams(init=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', '--config', type=str, default="./configs/config.json", |
|
help='JSON file for configuration') |
|
parser.add_argument('-m', '--model', type=str, required=True, |
|
help='Model name') |
|
|
|
args = parser.parse_args() |
|
model_dir = os.path.join("./logs", args.model) |
|
|
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
if init: |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
with open(config_save_path, "w") as f: |
|
f.write(data) |
|
else: |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_dir(model_dir): |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams =HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_file(config_path): |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
hparams =HParams(**config) |
|
return hparams |
|
|
|
|
|
def check_git_hash(model_dir): |
|
source_dir = os.path.dirname(os.path.realpath(__file__)) |
|
if not os.path.exists(os.path.join(source_dir, ".git")): |
|
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( |
|
source_dir |
|
)) |
|
return |
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD") |
|
|
|
path = os.path.join(model_dir, "githash") |
|
if os.path.exists(path): |
|
saved_hash = open(path).read() |
|
if saved_hash != cur_hash: |
|
logger.warn("git hash values are different. {}(saved) != {}(current)".format( |
|
saved_hash[:8], cur_hash[:8])) |
|
else: |
|
open(path, "w").write(cur_hash) |
|
|
|
|
|
def get_logger(model_dir, filename="train.log"): |
|
global logger |
|
logger = logging.getLogger(os.path.basename(model_dir)) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") |
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
h = logging.FileHandler(os.path.join(model_dir, filename)) |
|
h.setLevel(logging.DEBUG) |
|
h.setFormatter(formatter) |
|
logger.addHandler(h) |
|
return logger |
|
|
|
|
|
def repeat_expand_2d(content, target_len): |
|
|
|
|
|
src_len = content.shape[-1] |
|
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device) |
|
temp = torch.arange(src_len+1) * target_len / src_len |
|
current_pos = 0 |
|
for i in range(target_len): |
|
if i < temp[current_pos+1]: |
|
target[:, i] = content[:, current_pos] |
|
else: |
|
current_pos += 1 |
|
target[:, i] = content[:, current_pos] |
|
|
|
return target |
|
|
|
|
|
def mix_model(model_paths,mix_rate,mode): |
|
mix_rate = torch.FloatTensor(mix_rate)/100 |
|
model_tem = torch.load(model_paths[0]) |
|
models = [torch.load(path)["model"] for path in model_paths] |
|
if mode == 0: |
|
mix_rate = F.softmax(mix_rate,dim=0) |
|
for k in model_tem["model"].keys(): |
|
model_tem["model"][k] = torch.zeros_like(model_tem["model"][k]) |
|
for i,model in enumerate(models): |
|
model_tem["model"][k] += model[k]*mix_rate[i] |
|
torch.save(model_tem,os.path.join(os.path.curdir,"output.pth")) |
|
return os.path.join(os.path.curdir,"output.pth") |
|
|
|
class HParams(): |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|
|
def get(self,index): |
|
return self.__dict__.get(index) |
|
|
|
class Volume_Extractor: |
|
def __init__(self, hop_size = 512): |
|
self.hop_size = hop_size |
|
|
|
def extract(self, audio): |
|
if not isinstance(audio,torch.Tensor): |
|
audio = torch.Tensor(audio) |
|
n_frames = int(audio.size(-1) // self.hop_size) |
|
audio2 = audio ** 2 |
|
audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect') |
|
volume = torch.FloatTensor([torch.mean(audio2[:,int(n * self.hop_size) : int((n + 1) * self.hop_size)]) for n in range(n_frames)]) |
|
volume = torch.sqrt(volume) |
|
return volume |