|
import math |
|
import os |
|
os.environ["LRU_CACHE_CAPACITY"] = "3" |
|
import random |
|
import torch |
|
import torch.utils.data |
|
import numpy as np |
|
import librosa |
|
from librosa.util import normalize |
|
from librosa.filters import mel as librosa_mel_fn |
|
from scipy.io.wavfile import read |
|
import soundfile as sf |
|
import torch.nn.functional as F |
|
|
|
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False): |
|
sampling_rate = None |
|
try: |
|
data, sampling_rate = sf.read(full_path, always_2d=True) |
|
except Exception as ex: |
|
print(f"'{full_path}' failed to load.\nException:") |
|
print(ex) |
|
if return_empty_on_exception: |
|
return [], sampling_rate or target_sr or 48000 |
|
else: |
|
raise Exception(ex) |
|
|
|
if len(data.shape) > 1: |
|
data = data[:, 0] |
|
assert len(data) > 2 |
|
|
|
if np.issubdtype(data.dtype, np.integer): |
|
max_mag = -np.iinfo(data.dtype).min |
|
else: |
|
max_mag = max(np.amax(data), -np.amin(data)) |
|
max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) |
|
|
|
data = torch.FloatTensor(data.astype(np.float32))/max_mag |
|
|
|
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception: |
|
return [], sampling_rate or target_sr or 48000 |
|
if target_sr is not None and sampling_rate != target_sr: |
|
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr)) |
|
sampling_rate = target_sr |
|
|
|
return data, sampling_rate |
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5): |
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) |
|
|
|
def dynamic_range_decompression(x, C=1): |
|
return np.exp(x) / C |
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
def dynamic_range_decompression_torch(x, C=1): |
|
return torch.exp(x) / C |
|
|
|
class STFT(): |
|
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5): |
|
self.target_sr = sr |
|
|
|
self.n_mels = n_mels |
|
self.n_fft = n_fft |
|
self.win_size = win_size |
|
self.hop_length = hop_length |
|
self.fmin = fmin |
|
self.fmax = fmax |
|
self.clip_val = clip_val |
|
self.mel_basis = {} |
|
self.hann_window = {} |
|
|
|
def get_mel(self, y, keyshift=0, speed=1, center=False): |
|
sampling_rate = self.target_sr |
|
n_mels = self.n_mels |
|
n_fft = self.n_fft |
|
win_size = self.win_size |
|
hop_length = self.hop_length |
|
fmin = self.fmin |
|
fmax = self.fmax |
|
clip_val = self.clip_val |
|
|
|
factor = 2 ** (keyshift / 12) |
|
n_fft_new = int(np.round(n_fft * factor)) |
|
win_size_new = int(np.round(win_size * factor)) |
|
hop_length_new = int(np.round(hop_length * speed)) |
|
|
|
if torch.min(y) < -1.: |
|
print('min value is ', torch.min(y)) |
|
if torch.max(y) > 1.: |
|
print('max value is ', torch.max(y)) |
|
|
|
mel_basis_key = str(fmax)+'_'+str(y.device) |
|
if mel_basis_key not in self.mel_basis: |
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax) |
|
self.mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device) |
|
|
|
keyshift_key = str(keyshift)+'_'+str(y.device) |
|
if keyshift_key not in self.hann_window: |
|
self.hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device) |
|
|
|
pad_left = (win_size_new - hop_length_new) //2 |
|
pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left) |
|
if pad_right < y.size(-1): |
|
mode = 'reflect' |
|
else: |
|
mode = 'constant' |
|
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode) |
|
y = y.squeeze(1) |
|
|
|
spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=self.hann_window[keyshift_key], |
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) |
|
|
|
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) |
|
if keyshift != 0: |
|
size = n_fft // 2 + 1 |
|
resize = spec.size(1) |
|
if resize < size: |
|
spec = F.pad(spec, (0, 0, 0, size-resize)) |
|
spec = spec[:, :size, :] * win_size / win_size_new |
|
|
|
|
|
spec = torch.matmul(self.mel_basis[mel_basis_key], spec) |
|
|
|
spec = dynamic_range_compression_torch(spec, clip_val=clip_val) |
|
|
|
return spec |
|
|
|
def __call__(self, audiopath): |
|
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr) |
|
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0) |
|
return spect |
|
|
|
stft = STFT() |
|
|