File size: 14,961 Bytes
415d53c
2b3664e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f674379
2b3664e
 
 
 
 
 
f674379
2b3664e
 
 
f674379
2b3664e
 
 
 
f674379
2b3664e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f674379
2b3664e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f674379
 
 
 
 
 
 
 
 
 
 
 
 
 
2b3664e
f674379
 
 
 
32f6964
 
f674379
d7bd262
f674379
 
 
 
 
 
 
 
 
 
 
2b3664e
 
f674379
2b3664e
9defba9
 
 
 
f674379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b3664e
 
28cd3a8
17822c9
 
 
 
 
 
 
f674379
 
 
9defba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f674379
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import re
import os
import numpy as np
import torch
from torch import no_grad, LongTensor
import argparse
import commons
from mel_processing import spectrogram_torch
import utils
from models import SynthesizerTrn
import gradio as gr
import librosa
import webbrowser

from text import text_to_sequence, _clean_text
device = "cuda:0" if torch.cuda.is_available() else "cpu"
language_marks = {
    "Japanese": "",
    "日本語": "[JA]",
    "简体中文": "[ZH]",
    "English": "[EN]",
    "Mix": "",
}


def get_text(text, hps, is_symbol):
    text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm

def create_tts_fn(model, hps, speaker_ids):
    def tts_fn(text, speaker, language, ns, nsw, speed, is_symbol):
        if language is not None:
            text = language_marks[language] + text + language_marks[language]
        speaker_id = speaker_ids[speaker]
        stn_tst = get_text(text, hps, is_symbol)
        with no_grad():
            x_tst = stn_tst.unsqueeze(0).to(device)
            x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
            sid = LongTensor([speaker_id]).to(device)
            audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=ns, noise_scale_w=nsw,
                                length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
        del stn_tst, x_tst, x_tst_lengths, sid
        return "Success", (hps.data.sampling_rate, audio)

    return tts_fn

def create_vc_fn(model, hps, speaker_ids):
    def vc_fn(original_speaker, target_speaker, record_audio, upload_audio):
        input_audio = record_audio if record_audio is not None else upload_audio
        if input_audio is None:
            return "You need to record or upload an audio", None
        sampling_rate, audio = input_audio
        original_speaker_id = speaker_ids[original_speaker]
        target_speaker_id = speaker_ids[target_speaker]

        audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
        if len(audio.shape) > 1:
            audio = librosa.to_mono(audio.transpose(1, 0))
        if sampling_rate != hps.data.sampling_rate:
            audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
        with no_grad():
            y = torch.FloatTensor(audio)
            y = y / max(-y.min(), y.max()) / 0.99
            y = y.to(device)
            y = y.unsqueeze(0)
            spec = spectrogram_torch(y, hps.data.filter_length,
                                     hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
                                     center=False).to(device)
            spec_lengths = LongTensor([spec.size(-1)]).to(device)
            sid_src = LongTensor([original_speaker_id]).to(device)
            sid_tgt = LongTensor([target_speaker_id]).to(device)
            audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
                0, 0].data.cpu().float().numpy()
        del y, spec, spec_lengths, sid_src, sid_tgt
        return "Success", (hps.data.sampling_rate, audio)

    return vc_fn

def get_text(text, hps, is_symbol):
    text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
    if hps.data.add_blank:
        text_norm = commons.intersperse(text_norm, 0)
    text_norm = LongTensor(text_norm)
    return text_norm


def create_to_symbol_fn(hps):
    def to_symbol_fn(is_symbol_input, input_text, temp_text):
        return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \
            else (temp_text, temp_text)

    return to_symbol_fn

models_info = [
    {
        "languages": ['日本語', '简体中文', 'English', 'Mix'],
        "description": """
                       这个模型包含公主连结Re:Dive的161名角色,能合成中日英三语。\n\n
                       若需要在同一个句子中混合多种语言,使用相应的语言标记包裹句子。 (日语用[JA], 中文用[ZH], 英文用[EN]),参考Examples中的示例。
                       """,
        "model_path": "./models/G_9700.pth",
        "config_path": "./configs/modified_finetune_speaker.json",
        "examples": [['大切な人の誕生日を祝えるって、すごく幸せなことなんですよね。', '佩可莉姆', '日本語', 1, False],
                     ['その…この制服、どうですか?', '栞', '日本語', 1, False],
                     ['你们全都给我让开!敢挡路的家伙,我统统斩了!', '矛依未', '简体中文', 1, False],
                     ['Can you tell me how much the shirt is?', '美咲', 'English', 1, False],
                     ['[EN]Excuse me?[EN][JA]お帰りなさい,お兄様![JA]', '咲恋(夏日)', 'Mix', 1, False]],
    }
]

models_tts = []
models_vc = []
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    args = parser.parse_args()
    categories = ["Princess Connect! Re:Dive"]
    others = {
        "Umamusume": "https://huggingface.co/spaces/FrankZxShen/vits-fast-finetuning-umamusume",
    }
    for info in models_info:
        lang = info['languages']
        examples = info['examples']
        config_path = info['config_path']
        model_path = info['model_path']
        description = info['description']
        hps = utils.get_hparams_from_file(config_path)

        net_g = SynthesizerTrn(
            len(hps.symbols),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model).to(device)
        _ = net_g.eval()

        _ = utils.load_checkpoint(model_path, net_g, None)
        speaker_ids = hps.speakers
        speakers = list(hps.speakers.keys())
        models_tts.append((description, speakers, lang, examples,
                            hps.symbols, create_tts_fn(net_g, hps, speaker_ids),
                            create_to_symbol_fn(hps)))
        models_vc.append((description, speakers, create_vc_fn(net_g, hps, speaker_ids)))

    app = gr.Blocks()
    with app:
        gr.Markdown(
            "# <center> vits-fast-fineturning-models-pcr\n"
            "## <center> Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
            "## <center> 请不要生成会对个人以及组织造成侵害的内容\n\n"
            "[![image](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pn1xnFfdLK63gVXDwV4zCXfVeo8c-I-0?usp=sharing)\n\n"
            "[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/FrankZxShen/vits-fast-finetuning-pcr?duplicate=true)\n\n"
            "[![Finetune your own model](https://badgen.net/badge/icon/github?icon=github&label=Finetune%20your%20own%20model)](https://github.com/Plachtaa/VITS-fast-fine-tuning)"
        )
        gr.Markdown("# TTS&Voice Conversion for Princess Connect! Re:Dive\n\n"
                    )
        with gr.Tabs():
            for category in categories:
                with gr.TabItem(category):
                    with gr.Tab("TTS"):
                        for i, (description, speakers, lang, example, symbols, tts_fn, to_symbol_fn) in enumerate(
                                models_tts):
                            gr.Markdown(description)
                            with gr.Row():
                                with gr.Column():
                                    textbox = gr.TextArea(label="Text",
                                                          placeholder="Type your sentence here ",
                                                          value="よーし、私もがんばらないと!", elem_id=f"tts-input")
                                    with gr.Accordion(label="Phoneme Input", open=False):
                                        temp_text_var = gr.Variable()
                                        symbol_input = gr.Checkbox(
                                            value=False, label="Symbol input")
                                        symbol_list = gr.Dataset(label="Symbol list", components=[textbox],
                                                                 samples=[[x]
                                                                          for x in symbols],
                                                                 elem_id=f"symbol-list")
                                        symbol_list_json = gr.Json(
                                            value=symbols, visible=False)
                                    symbol_input.change(to_symbol_fn,
                                                        [symbol_input, textbox,
                                                            temp_text_var],
                                                        [textbox, temp_text_var])
                                    symbol_list.click(None, [symbol_list, symbol_list_json], textbox,
                                                      _js=f"""
                                    (i, symbols, text) => {{
                                        let root = document.querySelector("body > gradio-app");
                                        if (root.shadowRoot != null)
                                            root = root.shadowRoot;
                                        let text_input = root.querySelector("#tts-input").querySelector("textarea");
                                        let startPos = text_input.selectionStart;
                                        let endPos = text_input.selectionEnd;
                                        let oldTxt = text_input.value;
                                        let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
                                        text_input.value = result;
                                        let x = window.scrollX, y = window.scrollY;
                                        text_input.focus();
                                        text_input.selectionStart = startPos + symbols[i].length;
                                        text_input.selectionEnd = startPos + symbols[i].length;
                                        text_input.blur();
                                        window.scrollTo(x, y);
                                        text = text_input.value;
                                        return text;
                                    }}""")
                                    # select character
                                    char_dropdown = gr.Dropdown(
                                        choices=speakers, value=speakers[0], label='character')
                                    language_dropdown = gr.Dropdown(
                                        choices=lang, value=lang[0], label='language')
                                    ns = gr.Slider(
                                        label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
                                    nsw = gr.Slider(label="noise_scale_w", minimum=0.1,
                                                    maximum=1.0, step=0.1, value=0.668, interactive=True)
                                    duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
                                                                label='速度 Speed')
                                with gr.Column():
                                    text_output = gr.Textbox(label="Message")
                                    audio_output = gr.Audio(
                                        label="Output Audio", elem_id="tts-audio")
                                    btn = gr.Button("Generate!")
                                    btn.click(tts_fn,
                                              inputs=[textbox, char_dropdown, language_dropdown, ns, nsw, duration_slider,
                                                      symbol_input],
                                              outputs=[text_output, audio_output])
                            gr.Examples(
                                examples=example,
                                inputs=[textbox, char_dropdown, language_dropdown,
                                        duration_slider, symbol_input],
                                outputs=[text_output, audio_output],
                                fn=tts_fn
                            )
                    with gr.Tab("Voice Conversion"):
                        for i, (description, speakers, vc_fn) in enumerate(
                                models_vc):
                            gr.Markdown("""
                                            录制或上传声音,并选择要转换的音色。
                            """)
                            with gr.Column():
                                record_audio = gr.Audio(
                                    label="record your voice", source="microphone")
                                upload_audio = gr.Audio(
                                    label="or upload audio here", source="upload")
                                source_speaker = gr.Dropdown(
                                    choices=speakers, value=speakers[0], label="source speaker")
                                target_speaker = gr.Dropdown(
                                    choices=speakers, value=speakers[0], label="target speaker")
                            with gr.Column():
                                message_box = gr.Textbox(label="Message")
                                converted_audio = gr.Audio(
                                    label='converted audio')
                            btn = gr.Button("Convert!")
                            btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio],
                                      outputs=[message_box, converted_audio])
            for category, link in others.items():
                with gr.TabItem(category):
                    gr.Markdown(
                        f'''
                        <center>
                          <h2>Click to Go</h2>
                          <a href="{link}">
                            <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-xl-dark.svg"
                          </a>
                        </center>
                        '''
                    )

    app.queue(concurrency_count=3).launch(show_api=False, share=args.share)