|
import comfy.samplers
|
|
import comfy.utils
|
|
import torch
|
|
import numpy as np
|
|
from tqdm.auto import trange, tqdm
|
|
import math
|
|
|
|
|
|
@torch.no_grad()
|
|
def sample_lcm_upscale(model, x, sigmas, extra_args=None, callback=None, disable=None, total_upscale=2.0, upscale_method="bislerp", upscale_steps=None):
|
|
extra_args = {} if extra_args is None else extra_args
|
|
|
|
if upscale_steps is None:
|
|
upscale_steps = max(len(sigmas) // 2 + 1, 2)
|
|
else:
|
|
upscale_steps += 1
|
|
upscale_steps = min(upscale_steps, len(sigmas) + 1)
|
|
|
|
upscales = np.linspace(1.0, total_upscale, upscale_steps)[1:]
|
|
|
|
orig_shape = x.size()
|
|
s_in = x.new_ones([x.shape[0]])
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
|
if callback is not None:
|
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
|
|
|
x = denoised
|
|
if i < len(upscales):
|
|
x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled")
|
|
|
|
if sigmas[i + 1] > 0:
|
|
x += sigmas[i + 1] * torch.randn_like(x)
|
|
return x
|
|
|
|
|
|
class SamplerLCMUpscale:
|
|
upscale_methods = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"]
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"scale_ratio": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 20.0, "step": 0.01}),
|
|
"scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}),
|
|
"upscale_method": (s.upscale_methods,),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("SAMPLER",)
|
|
CATEGORY = "sampling/custom_sampling/samplers"
|
|
|
|
FUNCTION = "get_sampler"
|
|
|
|
def get_sampler(self, scale_ratio, scale_steps, upscale_method):
|
|
if scale_steps < 0:
|
|
scale_steps = None
|
|
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
|
|
return (sampler, )
|
|
|
|
from comfy.k_diffusion.sampling import to_d
|
|
import comfy.model_patcher
|
|
|
|
@torch.no_grad()
|
|
def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
|
extra_args = {} if extra_args is None else extra_args
|
|
|
|
temp = [0]
|
|
def post_cfg_function(args):
|
|
temp[0] = args["uncond_denoised"]
|
|
return args["denoised"]
|
|
|
|
model_options = extra_args.get("model_options", {}).copy()
|
|
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
|
|
|
s_in = x.new_ones([x.shape[0]])
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
sigma_hat = sigmas[i]
|
|
denoised = model(x, sigma_hat * s_in, **extra_args)
|
|
d = to_d(x - denoised + temp[0], sigmas[i], denoised)
|
|
if callback is not None:
|
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
|
dt = sigmas[i + 1] - sigma_hat
|
|
x = x + d * dt
|
|
return x
|
|
|
|
|
|
class SamplerEulerCFGpp:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"version": (["regular", "alternative"],),}
|
|
}
|
|
RETURN_TYPES = ("SAMPLER",)
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
FUNCTION = "get_sampler"
|
|
|
|
def get_sampler(self, version):
|
|
if version == "alternative":
|
|
sampler = comfy.samplers.KSAMPLER(sample_euler_pp)
|
|
else:
|
|
sampler = comfy.samplers.ksampler("euler_cfg_pp")
|
|
return (sampler, )
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"SamplerLCMUpscale": SamplerLCMUpscale,
|
|
"SamplerEulerCFGpp": SamplerEulerCFGpp,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"SamplerEulerCFGpp": "SamplerEulerCFG++",
|
|
}
|
|
|