ioatol / ComfyUI /comfy_extras /nodes_audio.py
Freak-ppa's picture
Upload 343 files
ac6acf2 verified
raw
history blame
7.41 kB
import torchaudio
import torch
import comfy.model_management
import folder_paths
import os
import io
import json
import struct
import random
from comfy.cli_args import args
class EmptyLatentAudio:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
@classmethod
def INPUT_TYPES(s):
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/audio"
def generate(self, seconds):
batch_size = 1
length = round((seconds * 44100 / 2048) / 2) * 2
latent = torch.zeros([batch_size, 64, length], device=self.device)
return ({"samples":latent, "type": "audio"}, )
class VAEEncodeAudio:
@classmethod
def INPUT_TYPES(s):
return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "encode"
CATEGORY = "latent/audio"
def encode(self, vae, audio):
sample_rate = audio["sample_rate"]
if 44100 != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
else:
waveform = audio["waveform"]
t = vae.encode(waveform.movedim(1, -1))
return ({"samples":t}, )
class VAEDecodeAudio:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
RETURN_TYPES = ("AUDIO",)
FUNCTION = "decode"
CATEGORY = "latent/audio"
def decode(self, vae, samples):
audio = vae.decode(samples["samples"]).movedim(-1, 1)
return ({"waveform": audio, "sample_rate": 44100}, )
def create_vorbis_comment_block(comment_dict, last_block):
vendor_string = b'ComfyUI'
vendor_length = len(vendor_string)
comments = []
for key, value in comment_dict.items():
comment = f"{key}={value}".encode('utf-8')
comments.append(struct.pack('<I', len(comment)) + comment)
user_comment_list_length = len(comments)
user_comments = b''.join(comments)
comment_data = struct.pack('<I', vendor_length) + vendor_string + struct.pack('<I', user_comment_list_length) + user_comments
if last_block:
id = b'\x84'
else:
id = b'\x04'
comment_block = id + struct.pack('>I', len(comment_data))[1:] + comment_data
return comment_block
def insert_or_replace_vorbis_comment(flac_io, comment_dict):
if len(comment_dict) == 0:
return flac_io
flac_io.seek(4)
blocks = []
last_block = False
while not last_block:
header = flac_io.read(4)
last_block = (header[0] & 0x80) != 0
block_type = header[0] & 0x7F
block_length = struct.unpack('>I', b'\x00' + header[1:])[0]
block_data = flac_io.read(block_length)
if block_type == 4 or block_type == 1:
pass
else:
header = bytes([(header[0] & (~0x80))]) + header[1:]
blocks.append(header + block_data)
blocks.append(create_vorbis_comment_block(comment_dict, last_block=True))
new_flac_io = io.BytesIO()
new_flac_io.write(b'fLaC')
for block in blocks:
new_flac_io.write(block)
new_flac_io.write(flac_io.read())
return new_flac_io
class SaveAudio:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
@classmethod
def INPUT_TYPES(s):
return {"required": { "audio": ("AUDIO", ),
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_audio"
OUTPUT_NODE = True
CATEGORY = "audio"
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
results = list()
metadata = {}
if not args.disable_metadata:
if prompt is not None:
metadata["prompt"] = json.dumps(prompt)
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.flac"
buff = io.BytesIO()
torchaudio.save(buff, waveform, audio["sample_rate"], format="FLAC")
buff = insert_or_replace_vorbis_comment(buff, metadata)
with open(os.path.join(full_output_folder, file), 'wb') as f:
f.write(buff.getbuffer())
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return { "ui": { "audio": results } }
class PreviewAudio(SaveAudio):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
@classmethod
def INPUT_TYPES(s):
return {"required":
{"audio": ("AUDIO", ), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
class LoadAudio:
SUPPORTED_FORMATS = ('.wav', '.mp3', '.ogg', '.flac', '.aiff', '.aif')
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [
f for f in os.listdir(input_dir)
if (os.path.isfile(os.path.join(input_dir, f))
and f.endswith(LoadAudio.SUPPORTED_FORMATS)
)
]
return {"required": {"audio": (sorted(files), {"audio_upload": True})}}
CATEGORY = "audio"
RETURN_TYPES = ("AUDIO", )
FUNCTION = "load"
def load(self, audio):
audio_path = folder_paths.get_annotated_filepath(audio)
waveform, sample_rate = torchaudio.load(audio_path)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
return (audio, )
@classmethod
def IS_CHANGED(s, audio):
image_path = folder_paths.get_annotated_filepath(audio)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, audio):
if not folder_paths.exists_annotated_filepath(audio):
return "Invalid audio file: {}".format(audio)
return True
NODE_CLASS_MAPPINGS = {
"EmptyLatentAudio": EmptyLatentAudio,
"VAEEncodeAudio": VAEEncodeAudio,
"VAEDecodeAudio": VAEDecodeAudio,
"SaveAudio": SaveAudio,
"LoadAudio": LoadAudio,
"PreviewAudio": PreviewAudio,
}