|
import torch
|
|
|
|
class InstructPixToPixConditioning:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"vae": ("VAE", ),
|
|
"pixels": ("IMAGE", ),
|
|
}}
|
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "conditioning/instructpix2pix"
|
|
|
|
def encode(self, positive, negative, pixels, vae):
|
|
x = (pixels.shape[1] // 8) * 8
|
|
y = (pixels.shape[2] // 8) * 8
|
|
|
|
if pixels.shape[1] != x or pixels.shape[2] != y:
|
|
x_offset = (pixels.shape[1] % 8) // 2
|
|
y_offset = (pixels.shape[2] % 8) // 2
|
|
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
|
|
|
concat_latent = vae.encode(pixels)
|
|
|
|
out_latent = {}
|
|
out_latent["samples"] = torch.zeros_like(concat_latent)
|
|
|
|
out = []
|
|
for conditioning in [positive, negative]:
|
|
c = []
|
|
for t in conditioning:
|
|
d = t[1].copy()
|
|
d["concat_latent_image"] = concat_latent
|
|
n = [t[0], d]
|
|
c.append(n)
|
|
out.append(c)
|
|
return (out[0], out[1], out_latent)
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"InstructPixToPixConditioning": InstructPixToPixConditioning,
|
|
}
|
|
|