|
import comfy.sd
|
|
import comfy.utils
|
|
import comfy.model_base
|
|
import comfy.model_management
|
|
import comfy.model_sampling
|
|
|
|
import torch
|
|
import folder_paths
|
|
import json
|
|
import os
|
|
|
|
from comfy.cli_args import args
|
|
|
|
class ModelMergeSimple:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model1": ("MODEL",),
|
|
"model2": ("MODEL",),
|
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, model1, model2, ratio):
|
|
m = model1.clone()
|
|
kp = model2.get_key_patches("diffusion_model.")
|
|
for k in kp:
|
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
|
return (m, )
|
|
|
|
class ModelSubtract:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model1": ("MODEL",),
|
|
"model2": ("MODEL",),
|
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, model1, model2, multiplier):
|
|
m = model1.clone()
|
|
kp = model2.get_key_patches("diffusion_model.")
|
|
for k in kp:
|
|
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
|
return (m, )
|
|
|
|
class ModelAdd:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model1": ("MODEL",),
|
|
"model2": ("MODEL",),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, model1, model2):
|
|
m = model1.clone()
|
|
kp = model2.get_key_patches("diffusion_model.")
|
|
for k in kp:
|
|
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
|
return (m, )
|
|
|
|
|
|
class CLIPMergeSimple:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip1": ("CLIP",),
|
|
"clip2": ("CLIP",),
|
|
"ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, clip1, clip2, ratio):
|
|
m = clip1.clone()
|
|
kp = clip2.get_key_patches()
|
|
for k in kp:
|
|
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
|
continue
|
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
|
return (m, )
|
|
|
|
|
|
class CLIPSubtract:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip1": ("CLIP",),
|
|
"clip2": ("CLIP",),
|
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, clip1, clip2, multiplier):
|
|
m = clip1.clone()
|
|
kp = clip2.get_key_patches()
|
|
for k in kp:
|
|
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
|
continue
|
|
m.add_patches({k: kp[k]}, - multiplier, multiplier)
|
|
return (m, )
|
|
|
|
|
|
class CLIPAdd:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip1": ("CLIP",),
|
|
"clip2": ("CLIP",),
|
|
}}
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, clip1, clip2):
|
|
m = clip1.clone()
|
|
kp = clip2.get_key_patches()
|
|
for k in kp:
|
|
if k.endswith(".position_ids") or k.endswith(".logit_scale"):
|
|
continue
|
|
m.add_patches({k: kp[k]}, 1.0, 1.0)
|
|
return (m, )
|
|
|
|
|
|
class ModelMergeBlocks:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model1": ("MODEL",),
|
|
"model2": ("MODEL",),
|
|
"input": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"middle": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "merge"
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def merge(self, model1, model2, **kwargs):
|
|
m = model1.clone()
|
|
kp = model2.get_key_patches("diffusion_model.")
|
|
default_ratio = next(iter(kwargs.values()))
|
|
|
|
for k in kp:
|
|
ratio = default_ratio
|
|
k_unet = k[len("diffusion_model."):]
|
|
|
|
last_arg_size = 0
|
|
for arg in kwargs:
|
|
if k_unet.startswith(arg) and last_arg_size < len(arg):
|
|
ratio = kwargs[arg]
|
|
last_arg_size = len(arg)
|
|
|
|
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
|
return (m, )
|
|
|
|
def save_checkpoint(model, clip=None, vae=None, clip_vision=None, filename_prefix=None, output_dir=None, prompt=None, extra_pnginfo=None):
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir)
|
|
prompt_info = ""
|
|
if prompt is not None:
|
|
prompt_info = json.dumps(prompt)
|
|
|
|
metadata = {}
|
|
|
|
enable_modelspec = True
|
|
if isinstance(model.model, comfy.model_base.SDXL):
|
|
if isinstance(model.model, comfy.model_base.SDXL_instructpix2pix):
|
|
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-edit"
|
|
else:
|
|
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-base"
|
|
elif isinstance(model.model, comfy.model_base.SDXLRefiner):
|
|
metadata["modelspec.architecture"] = "stable-diffusion-xl-v1-refiner"
|
|
elif isinstance(model.model, comfy.model_base.SVD_img2vid):
|
|
metadata["modelspec.architecture"] = "stable-video-diffusion-img2vid-v1"
|
|
elif isinstance(model.model, comfy.model_base.SD3):
|
|
metadata["modelspec.architecture"] = "stable-diffusion-v3-medium"
|
|
else:
|
|
enable_modelspec = False
|
|
|
|
if enable_modelspec:
|
|
metadata["modelspec.sai_model_spec"] = "1.0.0"
|
|
metadata["modelspec.implementation"] = "sgm"
|
|
metadata["modelspec.title"] = "{} {}".format(filename, counter)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extra_keys = {}
|
|
model_sampling = model.get_model_object("model_sampling")
|
|
if isinstance(model_sampling, comfy.model_sampling.ModelSamplingContinuousEDM):
|
|
if isinstance(model_sampling, comfy.model_sampling.V_PREDICTION):
|
|
extra_keys["edm_vpred.sigma_max"] = torch.tensor(model_sampling.sigma_max).float()
|
|
extra_keys["edm_vpred.sigma_min"] = torch.tensor(model_sampling.sigma_min).float()
|
|
|
|
if model.model.model_type == comfy.model_base.ModelType.EPS:
|
|
metadata["modelspec.predict_key"] = "epsilon"
|
|
elif model.model.model_type == comfy.model_base.ModelType.V_PREDICTION:
|
|
metadata["modelspec.predict_key"] = "v"
|
|
|
|
if not args.disable_metadata:
|
|
metadata["prompt"] = prompt_info
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
comfy.sd.save_checkpoint(output_checkpoint, model, clip, vae, clip_vision, metadata=metadata, extra_keys=extra_keys)
|
|
|
|
class CheckpointSave:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"clip": ("CLIP",),
|
|
"vae": ("VAE",),
|
|
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def save(self, model, clip, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
|
save_checkpoint(model, clip=clip, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
|
|
return {}
|
|
|
|
class CLIPSave:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip": ("CLIP",),
|
|
"filename_prefix": ("STRING", {"default": "clip/ComfyUI"}),},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def save(self, clip, filename_prefix, prompt=None, extra_pnginfo=None):
|
|
prompt_info = ""
|
|
if prompt is not None:
|
|
prompt_info = json.dumps(prompt)
|
|
|
|
metadata = {}
|
|
if not args.disable_metadata:
|
|
metadata["prompt"] = prompt_info
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
|
|
|
comfy.model_management.load_models_gpu([clip.load_model()], force_patch_weights=True)
|
|
clip_sd = clip.get_sd()
|
|
|
|
for prefix in ["clip_l.", "clip_g.", ""]:
|
|
k = list(filter(lambda a: a.startswith(prefix), clip_sd.keys()))
|
|
current_clip_sd = {}
|
|
for x in k:
|
|
current_clip_sd[x] = clip_sd.pop(x)
|
|
if len(current_clip_sd) == 0:
|
|
continue
|
|
|
|
p = prefix[:-1]
|
|
replace_prefix = {}
|
|
filename_prefix_ = filename_prefix
|
|
if len(p) > 0:
|
|
filename_prefix_ = "{}_{}".format(filename_prefix_, p)
|
|
replace_prefix[prefix] = ""
|
|
replace_prefix["transformer."] = ""
|
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix_ = folder_paths.get_save_image_path(filename_prefix_, self.output_dir)
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
current_clip_sd = comfy.utils.state_dict_prefix_replace(current_clip_sd, replace_prefix)
|
|
|
|
comfy.utils.save_torch_file(current_clip_sd, output_checkpoint, metadata=metadata)
|
|
return {}
|
|
|
|
class VAESave:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "vae": ("VAE",),
|
|
"filename_prefix": ("STRING", {"default": "vae/ComfyUI_vae"}),},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def save(self, vae, filename_prefix, prompt=None, extra_pnginfo=None):
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
|
prompt_info = ""
|
|
if prompt is not None:
|
|
prompt_info = json.dumps(prompt)
|
|
|
|
metadata = {}
|
|
if not args.disable_metadata:
|
|
metadata["prompt"] = prompt_info
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
comfy.utils.save_torch_file(vae.get_sd(), output_checkpoint, metadata=metadata)
|
|
return {}
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"ModelMergeSimple": ModelMergeSimple,
|
|
"ModelMergeBlocks": ModelMergeBlocks,
|
|
"ModelMergeSubtract": ModelSubtract,
|
|
"ModelMergeAdd": ModelAdd,
|
|
"CheckpointSave": CheckpointSave,
|
|
"CLIPMergeSimple": CLIPMergeSimple,
|
|
"CLIPMergeSubtract": CLIPSubtract,
|
|
"CLIPMergeAdd": CLIPAdd,
|
|
"CLIPSave": CLIPSave,
|
|
"VAESave": VAESave,
|
|
}
|
|
|