|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import multiprocessing |
|
import subprocess |
|
import sys |
|
import time |
|
import signal |
|
import json |
|
import os |
|
import requests |
|
|
|
from loguru import logger |
|
from decouple import config |
|
|
|
from pathlib import Path |
|
from PIL import Image |
|
import io |
|
|
|
URL="http://127.0.0.1" |
|
OUTPUT_DIR = config('OUTPUT_DIR') |
|
INPUT_DIR = config('INPUT_DIR') |
|
COMF_PATH = config('COMF_PATH') |
|
|
|
import torch |
|
|
|
import spaces |
|
|
|
print(f"Is CUDA available: {torch.cuda.is_available()}") |
|
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") |
|
print(torch.version.cuda) |
|
device = torch.cuda.get_device_name(torch.cuda.current_device()) |
|
print(device) |
|
|
|
|
|
def wait_for_image_with_prefix(folder, prefix): |
|
def is_file_ready(file_path): |
|
initial_size = os.path.getsize(file_path) |
|
time.sleep(1) |
|
return initial_size == os.path.getsize(file_path) |
|
|
|
|
|
files = os.listdir(folder) |
|
image_files = [f for f in files if f.lower().startswith(prefix.lower()) and |
|
f.lower().endswith(('.png', '.jpg', '.jpeg'))] |
|
|
|
if image_files: |
|
|
|
image_files.sort(key=lambda x: os.path.getmtime(os.path.join(folder, x)), reverse=True) |
|
latest_image = os.path.join(folder, image_files[0]) |
|
|
|
if is_file_ready(latest_image): |
|
|
|
time.sleep(3) |
|
return latest_image |
|
|
|
|
|
return None |
|
|
|
|
|
def delete_image_file(file_path): |
|
try: |
|
if os.path.exists(file_path): |
|
os.remove(file_path) |
|
logger.debug(f"file {file_path} deleted") |
|
else: |
|
logger.debug(f"file {file_path} is not exist") |
|
except Exception as e: |
|
logger.debug(f"error {file_path}: {str(e)}") |
|
|
|
|
|
def start_queue(prompt_workflow, port): |
|
p = {"prompt": prompt_workflow} |
|
data = json.dumps(p).encode('utf-8') |
|
requests.post(f"{URL}:{port}/prompt", data=data) |
|
|
|
|
|
def check_server_ready(port): |
|
try: |
|
response = requests.get(f"{URL}:{port}/history/123", timeout=5) |
|
return response.status_code == 200 |
|
except requests.RequestException: |
|
return False |
|
|
|
|
|
|
|
@spaces.GPU(duration=240) |
|
def generate_image(prompt, image, image2): |
|
prefix_filename = str(random.randint(0, 999999)) |
|
prompt = prompt.replace('ComfyUI', prefix_filename) |
|
prompt = json.loads(prompt) |
|
|
|
image = Image.fromarray(image) |
|
image.save(INPUT_DIR + '/input.png', format='PNG') |
|
if image2 is not None: |
|
image2 = Image.fromarray(image2) |
|
image2.save(INPUT_DIR + '/input2.png', format='PNG') |
|
|
|
process = None |
|
new_port = str(random.randint(8123, 8200)) |
|
|
|
try: |
|
|
|
process = subprocess.Popen([sys.executable, COMF_PATH, "--listen", "127.0.0.1", "--port", new_port]) |
|
logger.debug(f'Subprocess started with PID: {process.pid}') |
|
|
|
|
|
for _ in range(30): |
|
if check_server_ready(new_port): |
|
break |
|
time.sleep(1) |
|
else: |
|
raise TimeoutError("Server did not start in time") |
|
|
|
start_queue(prompt, new_port) |
|
|
|
|
|
timeout = 240 |
|
start_time = time.time() |
|
while time.time() - start_time < timeout: |
|
latest_image = wait_for_image_with_prefix(OUTPUT_DIR, prefix_filename) |
|
if latest_image: |
|
logger.debug(f"file is: {latest_image}") |
|
try: |
|
return Image.open(latest_image) |
|
finally: |
|
delete_image_file(latest_image) |
|
delete_image_file(INPUT_DIR + '/input.png') |
|
if image2 is not None: |
|
delete_image_file(INPUT_DIR + '/input2.png') |
|
time.sleep(1) |
|
|
|
raise TimeoutError("New image was not generated in time") |
|
|
|
except Exception as e: |
|
logger.error(f"Error in generate_image: {e}") |
|
|
|
finally: |
|
if process and process.poll() is None: |
|
process.terminate() |
|
logger.debug("process.terminate()") |
|
try: |
|
logger.debug("process.wait(timeout=5)") |
|
process.wait(timeout=5) |
|
except subprocess.TimeoutExpired: |
|
logger.debug("process.kill()") |
|
process.kill() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo = gr.Interface(fn=generate_image, |
|
inputs=[ |
|
"text", |
|
gr.Image(image_mode='RGBA', type="numpy"), |
|
gr.Image(image_mode='RGBA', type="numpy") |
|
], |
|
outputs=[ |
|
gr.Image(type="numpy", image_mode='RGBA') |
|
] |
|
) |
|
demo.launch(debug=True) |
|
logger.debug('demo.launch()') |
|
|
|
logger.info("Основной скрипт завершил работу.") |