import torch import os import math import folder_paths import comfy.model_management as model_management from node_helpers import conditioning_set_values from comfy.clip_vision import load as load_clip_vision from comfy.sd import load_lora_for_models import comfy.utils import torch.nn as nn from PIL import Image try: import torchvision.transforms.v2 as T except ImportError: import torchvision.transforms as T from .image_proj_models import MLPProjModel, MLPProjModelFaceId, ProjModelFaceIdPlus, Resampler, ImageProjModel from .CrossAttentionPatch import Attn2Replace, ipadapter_attention from .utils import ( encode_image_masked, tensor_to_size, contrast_adaptive_sharpening, tensor_to_image, image_to_tensor, ipadapter_model_loader, insightface_loader, get_clipvision_file, get_ipadapter_file, get_lora_file, ) # set the models directory if "ipadapter" not in folder_paths.folder_names_and_paths: current_paths = [os.path.join(folder_paths.models_dir, "ipadapter")] else: current_paths, _ = folder_paths.folder_names_and_paths["ipadapter"] folder_paths.folder_names_and_paths["ipadapter"] = (current_paths, folder_paths.supported_pt_extensions) WEIGHT_TYPES = ["linear", "ease in", "ease out", 'ease in-out', 'reverse in-out', 'weak input', 'weak output', 'weak middle', 'strong middle', 'style transfer', 'composition', 'strong style transfer', 'style and composition', 'style transfer precise', 'composition precise'] """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Main IPAdapter Class ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ class IPAdapter(nn.Module): def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4, is_sdxl=False, is_plus=False, is_full=False, is_faceid=False, is_portrait_unnorm=False, is_kwai_kolors=False): super().__init__() self.clip_embeddings_dim = clip_embeddings_dim self.cross_attention_dim = cross_attention_dim self.output_cross_attention_dim = output_cross_attention_dim self.clip_extra_context_tokens = clip_extra_context_tokens self.is_sdxl = is_sdxl self.is_full = is_full self.is_plus = is_plus self.is_portrait_unnorm = is_portrait_unnorm self.is_kwai_kolors = is_kwai_kolors if is_faceid and not is_portrait_unnorm: self.image_proj_model = self.init_proj_faceid() elif is_full: self.image_proj_model = self.init_proj_full() elif is_plus or is_portrait_unnorm: self.image_proj_model = self.init_proj_plus() else: self.image_proj_model = self.init_proj() self.image_proj_model.load_state_dict(ipadapter_model["image_proj"]) self.ip_layers = To_KV(ipadapter_model["ip_adapter"]) def init_proj(self): image_proj_model = ImageProjModel( cross_attention_dim=self.cross_attention_dim, clip_embeddings_dim=self.clip_embeddings_dim, clip_extra_context_tokens=self.clip_extra_context_tokens ) return image_proj_model def init_proj_plus(self): image_proj_model = Resampler( dim=self.cross_attention_dim, depth=4, dim_head=64, heads=20 if self.is_sdxl and not self.is_kwai_kolors else 12, num_queries=self.clip_extra_context_tokens, embedding_dim=self.clip_embeddings_dim, output_dim=self.output_cross_attention_dim, ff_mult=4 ) return image_proj_model def init_proj_full(self): image_proj_model = MLPProjModel( cross_attention_dim=self.cross_attention_dim, clip_embeddings_dim=self.clip_embeddings_dim ) return image_proj_model def init_proj_faceid(self): if self.is_plus: image_proj_model = ProjModelFaceIdPlus( cross_attention_dim=self.cross_attention_dim, id_embeddings_dim=512, clip_embeddings_dim=self.clip_embeddings_dim, # 1280, num_tokens=self.clip_extra_context_tokens, # 4, ) else: image_proj_model = MLPProjModelFaceId( cross_attention_dim=self.cross_attention_dim, id_embeddings_dim=512, num_tokens=self.clip_extra_context_tokens, ) return image_proj_model @torch.inference_mode() def get_image_embeds(self, clip_embed, clip_embed_zeroed, batch_size): torch_device = model_management.get_torch_device() intermediate_device = model_management.intermediate_device() if batch_size == 0: batch_size = clip_embed.shape[0] intermediate_device = torch_device elif batch_size > clip_embed.shape[0]: batch_size = clip_embed.shape[0] clip_embed = torch.split(clip_embed, batch_size, dim=0) clip_embed_zeroed = torch.split(clip_embed_zeroed, batch_size, dim=0) image_prompt_embeds = [] uncond_image_prompt_embeds = [] for ce, cez in zip(clip_embed, clip_embed_zeroed): image_prompt_embeds.append(self.image_proj_model(ce.to(torch_device)).to(intermediate_device)) uncond_image_prompt_embeds.append(self.image_proj_model(cez.to(torch_device)).to(intermediate_device)) del clip_embed, clip_embed_zeroed image_prompt_embeds = torch.cat(image_prompt_embeds, dim=0) uncond_image_prompt_embeds = torch.cat(uncond_image_prompt_embeds, dim=0) torch.cuda.empty_cache() #image_prompt_embeds = self.image_proj_model(clip_embed) #uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed) return image_prompt_embeds, uncond_image_prompt_embeds @torch.inference_mode() def get_image_embeds_faceid_plus(self, face_embed, clip_embed, s_scale, shortcut, batch_size): torch_device = model_management.get_torch_device() intermediate_device = model_management.intermediate_device() if batch_size == 0: batch_size = clip_embed.shape[0] intermediate_device = torch_device elif batch_size > clip_embed.shape[0]: batch_size = clip_embed.shape[0] face_embed_batch = torch.split(face_embed, batch_size, dim=0) clip_embed_batch = torch.split(clip_embed, batch_size, dim=0) embeds = [] for face_embed, clip_embed in zip(face_embed_batch, clip_embed_batch): embeds.append(self.image_proj_model(face_embed.to(torch_device), clip_embed.to(torch_device), scale=s_scale, shortcut=shortcut).to(intermediate_device)) del face_embed_batch, clip_embed_batch embeds = torch.cat(embeds, dim=0) torch.cuda.empty_cache() #embeds = self.image_proj_model(face_embed, clip_embed, scale=s_scale, shortcut=shortcut) return embeds class To_KV(nn.Module): def __init__(self, state_dict): super().__init__() self.to_kvs = nn.ModuleDict() for key, value in state_dict.items(): self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False) self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value def set_model_patch_replace(model, patch_kwargs, key): to = model.model_options["transformer_options"].copy() if "patches_replace" not in to: to["patches_replace"] = {} else: to["patches_replace"] = to["patches_replace"].copy() if "attn2" not in to["patches_replace"]: to["patches_replace"]["attn2"] = {} else: to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy() if key not in to["patches_replace"]["attn2"]: to["patches_replace"]["attn2"][key] = Attn2Replace(ipadapter_attention, **patch_kwargs) model.model_options["transformer_options"] = to else: to["patches_replace"]["attn2"][key].add(ipadapter_attention, **patch_kwargs) def ipadapter_execute(model, ipadapter, clipvision, insightface=None, image=None, image_composition=None, image_negative=None, weight=1.0, weight_composition=1.0, weight_faceidv2=None, weight_type="linear", combine_embeds="concat", start_at=0.0, end_at=1.0, attn_mask=None, pos_embed=None, neg_embed=None, unfold_batch=False, embeds_scaling='V only', layer_weights=None, encode_batch_size=0, style_boost=None, composition_boost=None, enhance_tiles=1, enhance_ratio=1.0,): device = model_management.get_torch_device() dtype = model_management.unet_dtype() if dtype not in [torch.float32, torch.float16, torch.bfloat16]: dtype = torch.float16 if model_management.should_use_fp16() else torch.float32 is_full = "proj.3.weight" in ipadapter["image_proj"] is_portrait = "proj.2.weight" in ipadapter["image_proj"] and not "proj.3.weight" in ipadapter["image_proj"] and not "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] is_portrait_unnorm = "portraitunnorm" in ipadapter is_faceid = is_portrait or "0.to_q_lora.down.weight" in ipadapter["ip_adapter"] or is_portrait_unnorm is_plus = (is_full or "latents" in ipadapter["image_proj"] or "perceiver_resampler.proj_in.weight" in ipadapter["image_proj"]) and not is_portrait_unnorm is_faceidv2 = "faceidplusv2" in ipadapter output_cross_attention_dim = ipadapter["ip_adapter"]["1.to_k_ip.weight"].shape[1] is_sdxl = output_cross_attention_dim == 2048 is_kwai_kolors = is_sdxl and "layers.0.0.to_out.weight" in ipadapter["image_proj"] and ipadapter["image_proj"]["layers.0.0.to_out.weight"].shape[0] == 2048 if is_faceid and not insightface: raise Exception("insightface model is required for FaceID models") if is_faceidv2: weight_faceidv2 = weight_faceidv2 if weight_faceidv2 is not None else weight*2 cross_attention_dim = 1280 if (is_plus and is_sdxl and not is_faceid and not is_kwai_kolors) or is_portrait_unnorm else output_cross_attention_dim clip_extra_context_tokens = 16 if (is_plus and not is_faceid) or is_portrait or is_portrait_unnorm else 4 if image is not None and image.shape[1] != image.shape[2]: print("\033[33mINFO: the IPAdapter reference image is not a square, CLIPImageProcessor will resize and crop it at the center. If the main focus of the picture is not in the middle the result might not be what you are expecting.\033[0m") if isinstance(weight, list): weight = torch.tensor(weight).unsqueeze(-1).unsqueeze(-1).to(device, dtype=dtype) if unfold_batch else weight[0] if style_boost is not None: weight_type = "style transfer precise" elif composition_boost is not None: weight_type = "composition precise" # special weight types if layer_weights is not None and layer_weights != '': weight = { int(k): float(v)*weight for k, v in [x.split(":") for x in layer_weights.split(",")] } weight_type = weight_type if weight_type == "style transfer precise" or weight_type == "composition precise" else "linear" elif weight_type == "style transfer": weight = { 6:weight } if is_sdxl else { 0:weight, 1:weight, 2:weight, 3:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } elif weight_type == "composition": weight = { 3:weight } if is_sdxl else { 4:weight*0.25, 5:weight } elif weight_type == "strong style transfer": if is_sdxl: weight = { 0:weight, 1:weight, 2:weight, 4:weight, 5:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight } else: weight = { 0:weight, 1:weight, 2:weight, 3:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } elif weight_type == "style and composition": if is_sdxl: weight = { 3:weight_composition, 6:weight } else: weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } elif weight_type == "strong style and composition": if is_sdxl: weight = { 0:weight, 1:weight, 2:weight, 3:weight_composition, 4:weight, 5:weight, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight } else: weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition, 5:weight_composition, 6:weight, 7:weight, 8:weight, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } elif weight_type == "style transfer precise": weight_composition = style_boost if style_boost is not None else weight if is_sdxl: weight = { 3:weight_composition, 6:weight } else: weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } elif weight_type == "composition precise": weight_composition = weight weight = composition_boost if composition_boost is not None else weight if is_sdxl: weight = { 0:weight*.1, 1:weight*.1, 2:weight*.1, 3:weight_composition, 4:weight*.1, 5:weight*.1, 6:weight, 7:weight*.1, 8:weight*.1, 9:weight*.1, 10:weight*.1 } else: weight = { 0:weight, 1:weight, 2:weight, 3:weight, 4:weight_composition*0.25, 5:weight_composition, 6:weight*.1, 7:weight*.1, 8:weight*.1, 9:weight, 10:weight, 11:weight, 12:weight, 13:weight, 14:weight, 15:weight } clipvision_size=224 if not is_kwai_kolors else 336 img_comp_cond_embeds = None face_cond_embeds = None if is_faceid: if insightface is None: raise Exception("Insightface model is required for FaceID models") from insightface.utils import face_align insightface.det_model.input_size = (640,640) # reset the detection size image_iface = tensor_to_image(image) face_cond_embeds = [] image = [] for i in range(image_iface.shape[0]): for size in [(size, size) for size in range(640, 256, -64)]: insightface.det_model.input_size = size # TODO: hacky but seems to be working face = insightface.get(image_iface[i]) if face: if not is_portrait_unnorm: face_cond_embeds.append(torch.from_numpy(face[0].normed_embedding).unsqueeze(0)) else: face_cond_embeds.append(torch.from_numpy(face[0].embedding).unsqueeze(0)) image.append(image_to_tensor(face_align.norm_crop(image_iface[i], landmark=face[0].kps, image_size=256 if is_sdxl else 224))) if 640 not in size: print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m") break else: raise Exception('InsightFace: No face detected.') face_cond_embeds = torch.stack(face_cond_embeds).to(device, dtype=dtype) image = torch.stack(image) del image_iface, face if image is not None: img_cond_embeds = encode_image_masked(clipvision, image, batch_size=encode_batch_size, tiles=enhance_tiles, ratio=enhance_ratio, clipvision_size=clipvision_size) if image_composition is not None: img_comp_cond_embeds = encode_image_masked(clipvision, image_composition, batch_size=encode_batch_size, tiles=enhance_tiles, ratio=enhance_ratio, clipvision_size=clipvision_size) if is_plus: img_cond_embeds = img_cond_embeds.penultimate_hidden_states image_negative = image_negative if image_negative is not None else torch.zeros([1, clipvision_size, clipvision_size, 3]) img_uncond_embeds = encode_image_masked(clipvision, image_negative, batch_size=encode_batch_size, clipvision_size=clipvision_size).penultimate_hidden_states if image_composition is not None: img_comp_cond_embeds = img_comp_cond_embeds.penultimate_hidden_states else: img_cond_embeds = img_cond_embeds.image_embeds if not is_faceid else face_cond_embeds if image_negative is not None and not is_faceid: img_uncond_embeds = encode_image_masked(clipvision, image_negative, batch_size=encode_batch_size, clipvision_size=clipvision_size).image_embeds else: img_uncond_embeds = torch.zeros_like(img_cond_embeds) if image_composition is not None: img_comp_cond_embeds = img_comp_cond_embeds.image_embeds del image_negative, image_composition image = None if not is_faceid else image # if it's face_id we need the cropped face for later elif pos_embed is not None: img_cond_embeds = pos_embed if neg_embed is not None: img_uncond_embeds = neg_embed else: if is_plus: img_uncond_embeds = encode_image_masked(clipvision, torch.zeros([1, clipvision_size, clipvision_size, 3]), clipvision_size=clipvision_size).penultimate_hidden_states else: img_uncond_embeds = torch.zeros_like(img_cond_embeds) del pos_embed, neg_embed else: raise Exception("Images or Embeds are required") # ensure that cond and uncond have the same batch size img_uncond_embeds = tensor_to_size(img_uncond_embeds, img_cond_embeds.shape[0]) img_cond_embeds = img_cond_embeds.to(device, dtype=dtype) img_uncond_embeds = img_uncond_embeds.to(device, dtype=dtype) if img_comp_cond_embeds is not None: img_comp_cond_embeds = img_comp_cond_embeds.to(device, dtype=dtype) # combine the embeddings if needed if combine_embeds != "concat" and img_cond_embeds.shape[0] > 1 and not unfold_batch: if combine_embeds == "add": img_cond_embeds = torch.sum(img_cond_embeds, dim=0).unsqueeze(0) if face_cond_embeds is not None: face_cond_embeds = torch.sum(face_cond_embeds, dim=0).unsqueeze(0) if img_comp_cond_embeds is not None: img_comp_cond_embeds = torch.sum(img_comp_cond_embeds, dim=0).unsqueeze(0) elif combine_embeds == "subtract": img_cond_embeds = img_cond_embeds[0] - torch.mean(img_cond_embeds[1:], dim=0) img_cond_embeds = img_cond_embeds.unsqueeze(0) if face_cond_embeds is not None: face_cond_embeds = face_cond_embeds[0] - torch.mean(face_cond_embeds[1:], dim=0) face_cond_embeds = face_cond_embeds.unsqueeze(0) if img_comp_cond_embeds is not None: img_comp_cond_embeds = img_comp_cond_embeds[0] - torch.mean(img_comp_cond_embeds[1:], dim=0) img_comp_cond_embeds = img_comp_cond_embeds.unsqueeze(0) elif combine_embeds == "average": img_cond_embeds = torch.mean(img_cond_embeds, dim=0).unsqueeze(0) if face_cond_embeds is not None: face_cond_embeds = torch.mean(face_cond_embeds, dim=0).unsqueeze(0) if img_comp_cond_embeds is not None: img_comp_cond_embeds = torch.mean(img_comp_cond_embeds, dim=0).unsqueeze(0) elif combine_embeds == "norm average": img_cond_embeds = torch.mean(img_cond_embeds / torch.norm(img_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0) if face_cond_embeds is not None: face_cond_embeds = torch.mean(face_cond_embeds / torch.norm(face_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0) if img_comp_cond_embeds is not None: img_comp_cond_embeds = torch.mean(img_comp_cond_embeds / torch.norm(img_comp_cond_embeds, dim=0, keepdim=True), dim=0).unsqueeze(0) img_uncond_embeds = img_uncond_embeds[0].unsqueeze(0) # TODO: better strategy for uncond could be to average them if attn_mask is not None: attn_mask = attn_mask.to(device, dtype=dtype) ipa = IPAdapter( ipadapter, cross_attention_dim=cross_attention_dim, output_cross_attention_dim=output_cross_attention_dim, clip_embeddings_dim=img_cond_embeds.shape[-1], clip_extra_context_tokens=clip_extra_context_tokens, is_sdxl=is_sdxl, is_plus=is_plus, is_full=is_full, is_faceid=is_faceid, is_portrait_unnorm=is_portrait_unnorm, is_kwai_kolors=is_kwai_kolors, ).to(device, dtype=dtype) if is_faceid and is_plus: cond = ipa.get_image_embeds_faceid_plus(face_cond_embeds, img_cond_embeds, weight_faceidv2, is_faceidv2, encode_batch_size) # TODO: check if noise helps with the uncond face embeds uncond = ipa.get_image_embeds_faceid_plus(torch.zeros_like(face_cond_embeds), img_uncond_embeds, weight_faceidv2, is_faceidv2, encode_batch_size) else: cond, uncond = ipa.get_image_embeds(img_cond_embeds, img_uncond_embeds, encode_batch_size) if img_comp_cond_embeds is not None: cond_comp = ipa.get_image_embeds(img_comp_cond_embeds, img_uncond_embeds, encode_batch_size)[0] cond = cond.to(device, dtype=dtype) uncond = uncond.to(device, dtype=dtype) cond_alt = None if img_comp_cond_embeds is not None: cond_alt = { 3: cond_comp.to(device, dtype=dtype) } del img_cond_embeds, img_uncond_embeds, img_comp_cond_embeds, face_cond_embeds sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) patch_kwargs = { "ipadapter": ipa, "weight": weight, "cond": cond, "cond_alt": cond_alt, "uncond": uncond, "weight_type": weight_type, "mask": attn_mask, "sigma_start": sigma_start, "sigma_end": sigma_end, "unfold_batch": unfold_batch, "embeds_scaling": embeds_scaling, } number = 0 if not is_sdxl: for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention patch_kwargs["module_key"] = str(number*2+1) set_model_patch_replace(model, patch_kwargs, ("input", id)) number += 1 for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention patch_kwargs["module_key"] = str(number*2+1) set_model_patch_replace(model, patch_kwargs, ("output", id)) number += 1 patch_kwargs["module_key"] = str(number*2+1) set_model_patch_replace(model, patch_kwargs, ("middle", 0)) else: for id in [4,5,7,8]: # id of input_blocks that have cross attention block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth for index in block_indices: patch_kwargs["module_key"] = str(number*2+1) set_model_patch_replace(model, patch_kwargs, ("input", id, index)) number += 1 for id in range(6): # id of output_blocks that have cross attention block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth for index in block_indices: patch_kwargs["module_key"] = str(number*2+1) set_model_patch_replace(model, patch_kwargs, ("output", id, index)) number += 1 for index in range(10): patch_kwargs["module_key"] = str(number*2+1) set_model_patch_replace(model, patch_kwargs, ("middle", 0, index)) number += 1 return (model, image) """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Loaders ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ class IPAdapterUnifiedLoader: def __init__(self): self.lora = None self.clipvision = { "file": None, "model": None } self.ipadapter = { "file": None, "model": None } self.insightface = { "provider": None, "model": None } @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL", ), "preset": (['LIGHT - SD1.5 only (low strength)', 'STANDARD (medium strength)', 'VIT-G (medium strength)', 'PLUS (high strength)', 'PLUS FACE (portraits)', 'FULL FACE - SD1.5 only (portraits stronger)'], ), }, "optional": { "ipadapter": ("IPADAPTER", ), }} RETURN_TYPES = ("MODEL", "IPADAPTER", ) RETURN_NAMES = ("model", "ipadapter", ) FUNCTION = "load_models" CATEGORY = "ipadapter" def load_models(self, model, preset, lora_strength=0.0, provider="CPU", ipadapter=None): pipeline = { "clipvision": { 'file': None, 'model': None }, "ipadapter": { 'file': None, 'model': None }, "insightface": { 'provider': None, 'model': None } } if ipadapter is not None: pipeline = ipadapter # 1. Load the clipvision model clipvision_file = get_clipvision_file(preset) if clipvision_file is None: raise Exception("ClipVision model not found.") if clipvision_file != self.clipvision['file']: if clipvision_file != pipeline['clipvision']['file']: self.clipvision['file'] = clipvision_file self.clipvision['model'] = load_clip_vision(clipvision_file) print(f"\033[33mINFO: Clip Vision model loaded from {clipvision_file}\033[0m") else: self.clipvision = pipeline['clipvision'] # 2. Load the ipadapter model is_sdxl = isinstance(model.model, (comfy.model_base.SDXL, comfy.model_base.SDXLRefiner, comfy.model_base.SDXL_instructpix2pix)) ipadapter_file, is_insightface, lora_pattern = get_ipadapter_file(preset, is_sdxl) if ipadapter_file is None: raise Exception("IPAdapter model not found.") if ipadapter_file != self.ipadapter['file']: if pipeline['ipadapter']['file'] != ipadapter_file: self.ipadapter['file'] = ipadapter_file self.ipadapter['model'] = ipadapter_model_loader(ipadapter_file) print(f"\033[33mINFO: IPAdapter model loaded from {ipadapter_file}\033[0m") else: self.ipadapter = pipeline['ipadapter'] # 3. Load the lora model if needed if lora_pattern is not None: lora_file = get_lora_file(lora_pattern) lora_model = None if lora_file is None: raise Exception("LoRA model not found.") if self.lora is not None: if lora_file == self.lora['file']: lora_model = self.lora['model'] else: self.lora = None torch.cuda.empty_cache() if lora_model is None: lora_model = comfy.utils.load_torch_file(lora_file, safe_load=True) self.lora = { 'file': lora_file, 'model': lora_model } print(f"\033[33mINFO: LoRA model loaded from {lora_file}\033[0m") if lora_strength > 0: model, _ = load_lora_for_models(model, None, lora_model, lora_strength, 0) # 4. Load the insightface model if needed if is_insightface: if provider != self.insightface['provider']: if pipeline['insightface']['provider'] != provider: self.insightface['provider'] = provider self.insightface['model'] = insightface_loader(provider) print(f"\033[33mINFO: InsightFace model loaded with {provider} provider\033[0m") else: self.insightface = pipeline['insightface'] return (model, { 'clipvision': self.clipvision, 'ipadapter': self.ipadapter, 'insightface': self.insightface }, ) class IPAdapterUnifiedLoaderFaceID(IPAdapterUnifiedLoader): @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL", ), "preset": (['FACEID', 'FACEID PLUS - SD1.5 only', 'FACEID PLUS V2', 'FACEID PORTRAIT (style transfer)', 'FACEID PORTRAIT UNNORM - SDXL only (strong)'], ), "lora_strength": ("FLOAT", { "default": 0.6, "min": 0, "max": 1, "step": 0.01 }), "provider": (["CPU", "CUDA", "ROCM", "DirectML", "OpenVINO", "CoreML"], ), }, "optional": { "ipadapter": ("IPADAPTER", ), }} RETURN_NAMES = ("MODEL", "ipadapter", ) CATEGORY = "ipadapter/faceid" class IPAdapterUnifiedLoaderCommunity(IPAdapterUnifiedLoader): @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL", ), "preset": (['Composition', 'Kolors'], ), }, "optional": { "ipadapter": ("IPADAPTER", ), }} CATEGORY = "ipadapter/loaders" class IPAdapterModelLoader: @classmethod def INPUT_TYPES(s): return {"required": { "ipadapter_file": (folder_paths.get_filename_list("ipadapter"), )}} RETURN_TYPES = ("IPADAPTER",) FUNCTION = "load_ipadapter_model" CATEGORY = "ipadapter/loaders" def load_ipadapter_model(self, ipadapter_file): ipadapter_file = folder_paths.get_full_path("ipadapter", ipadapter_file) return (ipadapter_model_loader(ipadapter_file),) class IPAdapterInsightFaceLoader: @classmethod def INPUT_TYPES(s): return { "required": { "provider": (["CPU", "CUDA", "ROCM"], ), }, } RETURN_TYPES = ("INSIGHTFACE",) FUNCTION = "load_insightface" CATEGORY = "ipadapter/loaders" def load_insightface(self, provider): return (insightface_loader(provider),) """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Main Apply Nodes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ class IPAdapterSimple: @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "weight_type": (['standard', 'prompt is more important', 'style transfer'], ), }, "optional": { "attn_mask": ("MASK",), } } RETURN_TYPES = ("MODEL",) FUNCTION = "apply_ipadapter" CATEGORY = "ipadapter" def apply_ipadapter(self, model, ipadapter, image, weight, start_at, end_at, weight_type, attn_mask=None): if weight_type.startswith("style"): weight_type = "style transfer" elif weight_type == "prompt is more important": weight_type = "ease out" else: weight_type = "linear" ipa_args = { "image": image, "weight": weight, "start_at": start_at, "end_at": end_at, "attn_mask": attn_mask, "weight_type": weight_type, "insightface": ipadapter['insightface']['model'] if 'insightface' in ipadapter else None, } if 'ipadapter' not in ipadapter: raise Exception("IPAdapter model not present in the pipeline. Please load the models with the IPAdapterUnifiedLoader node.") if 'clipvision' not in ipadapter: raise Exception("CLIPVision model not present in the pipeline. Please load the models with the IPAdapterUnifiedLoader node.") return ipadapter_execute(model.clone(), ipadapter['ipadapter']['model'], ipadapter['clipvision']['model'], **ipa_args) class IPAdapterAdvanced: def __init__(self): self.unfold_batch = False @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } RETURN_TYPES = ("MODEL",) FUNCTION = "apply_ipadapter" CATEGORY = "ipadapter" def apply_ipadapter(self, model, ipadapter, start_at=0.0, end_at=1.0, weight=1.0, weight_style=1.0, weight_composition=1.0, expand_style=False, weight_type="linear", combine_embeds="concat", weight_faceidv2=None, image=None, image_style=None, image_composition=None, image_negative=None, clip_vision=None, attn_mask=None, insightface=None, embeds_scaling='V only', layer_weights=None, ipadapter_params=None, encode_batch_size=0, style_boost=None, composition_boost=None, enhance_tiles=1, enhance_ratio=1.0): is_sdxl = isinstance(model.model, (comfy.model_base.SDXL, comfy.model_base.SDXLRefiner, comfy.model_base.SDXL_instructpix2pix)) if 'ipadapter' in ipadapter: ipadapter_model = ipadapter['ipadapter']['model'] clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model'] else: ipadapter_model = ipadapter if clip_vision is None: raise Exception("Missing CLIPVision model.") if image_style is not None: # we are doing style + composition transfer if not is_sdxl: raise Exception("Style + Composition transfer is only available for SDXL models at the moment.") # TODO: check feasibility for SD1.5 models image = image_style weight = weight_style if image_composition is None: image_composition = image_style weight_type = "strong style and composition" if expand_style else "style and composition" if ipadapter_params is not None: # we are doing batch processing image = ipadapter_params['image'] attn_mask = ipadapter_params['attn_mask'] weight = ipadapter_params['weight'] weight_type = ipadapter_params['weight_type'] start_at = ipadapter_params['start_at'] end_at = ipadapter_params['end_at'] else: # at this point weight can be a list from the batch-weight or a single float weight = [weight] image = image if isinstance(image, list) else [image] work_model = model.clone() for i in range(len(image)): if image[i] is None: continue ipa_args = { "image": image[i], "image_composition": image_composition, "image_negative": image_negative, "weight": weight[i], "weight_composition": weight_composition, "weight_faceidv2": weight_faceidv2, "weight_type": weight_type if not isinstance(weight_type, list) else weight_type[i], "combine_embeds": combine_embeds, "start_at": start_at if not isinstance(start_at, list) else start_at[i], "end_at": end_at if not isinstance(end_at, list) else end_at[i], "attn_mask": attn_mask if not isinstance(attn_mask, list) else attn_mask[i], "unfold_batch": self.unfold_batch, "embeds_scaling": embeds_scaling, "insightface": insightface if insightface is not None else ipadapter['insightface']['model'] if 'insightface' in ipadapter else None, "layer_weights": layer_weights, "encode_batch_size": encode_batch_size, "style_boost": style_boost, "composition_boost": composition_boost, "enhance_tiles": enhance_tiles, "enhance_ratio": enhance_ratio, } work_model, face_image = ipadapter_execute(work_model, ipadapter_model, clip_vision, **ipa_args) del ipadapter return (work_model, face_image, ) class IPAdapterBatch(IPAdapterAdvanced): def __init__(self): self.unfold_batch = True @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), "encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } class IPAdapterStyleComposition(IPAdapterAdvanced): @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image_style": ("IMAGE",), "image_composition": ("IMAGE",), "weight_style": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "weight_composition": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "expand_style": ("BOOLEAN", { "default": False }), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"], {"default": "average"}), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } CATEGORY = "ipadapter/style_composition" class IPAdapterStyleCompositionBatch(IPAdapterStyleComposition): def __init__(self): self.unfold_batch = True @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image_style": ("IMAGE",), "image_composition": ("IMAGE",), "weight_style": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "weight_composition": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "expand_style": ("BOOLEAN", { "default": False }), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } class IPAdapterFaceID(IPAdapterAdvanced): @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), "weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), "insightface": ("INSIGHTFACE",), } } CATEGORY = "ipadapter/faceid" RETURN_TYPES = ("MODEL","IMAGE",) RETURN_NAMES = ("MODEL", "face_image", ) class IPAAdapterFaceIDBatch(IPAdapterFaceID): def __init__(self): self.unfold_batch = True class IPAdapterTiled: def __init__(self): self.unfold_batch = False @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "sharpening": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } RETURN_TYPES = ("MODEL", "IMAGE", "MASK", ) RETURN_NAMES = ("MODEL", "tiles", "masks", ) FUNCTION = "apply_tiled" CATEGORY = "ipadapter/tiled" def apply_tiled(self, model, ipadapter, image, weight, weight_type, start_at, end_at, sharpening, combine_embeds="concat", image_negative=None, attn_mask=None, clip_vision=None, embeds_scaling='V only', encode_batch_size=0): # 1. Select the models if 'ipadapter' in ipadapter: ipadapter_model = ipadapter['ipadapter']['model'] clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model'] else: ipadapter_model = ipadapter clip_vision = clip_vision if clip_vision is None: raise Exception("Missing CLIPVision model.") del ipadapter # 2. Extract the tiles tile_size = 256 # I'm using 256 instead of 224 as it is more likely divisible by the latent size, it will be downscaled to 224 by the clip vision encoder _, oh, ow, _ = image.shape if attn_mask is None: attn_mask = torch.ones([1, oh, ow], dtype=image.dtype, device=image.device) image = image.permute([0,3,1,2]) attn_mask = attn_mask.unsqueeze(1) # the mask should have the same proportions as the reference image and the latent attn_mask = T.Resize((oh, ow), interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask) # if the image is almost a square, we crop it to a square if oh / ow > 0.75 and oh / ow < 1.33: # crop the image to a square image = T.CenterCrop(min(oh, ow))(image) resize = (tile_size*2, tile_size*2) attn_mask = T.CenterCrop(min(oh, ow))(attn_mask) # otherwise resize the smallest side and the other proportionally else: resize = (int(tile_size * ow / oh), tile_size) if oh < ow else (tile_size, int(tile_size * oh / ow)) # using PIL for better results imgs = [] for img in image: img = T.ToPILImage()(img) img = img.resize(resize, resample=Image.Resampling['LANCZOS']) imgs.append(T.ToTensor()(img)) image = torch.stack(imgs) del imgs, img # we don't need a high quality resize for the mask attn_mask = T.Resize(resize[::-1], interpolation=T.InterpolationMode.BICUBIC, antialias=True)(attn_mask) # we allow a maximum of 4 tiles if oh / ow > 4 or oh / ow < 0.25: crop = (tile_size, tile_size*4) if oh < ow else (tile_size*4, tile_size) image = T.CenterCrop(crop)(image) attn_mask = T.CenterCrop(crop)(attn_mask) attn_mask = attn_mask.squeeze(1) if sharpening > 0: image = contrast_adaptive_sharpening(image, sharpening) image = image.permute([0,2,3,1]) _, oh, ow, _ = image.shape # find the number of tiles for each side tiles_x = math.ceil(ow / tile_size) tiles_y = math.ceil(oh / tile_size) overlap_x = max(0, (tiles_x * tile_size - ow) / (tiles_x - 1 if tiles_x > 1 else 1)) overlap_y = max(0, (tiles_y * tile_size - oh) / (tiles_y - 1 if tiles_y > 1 else 1)) base_mask = torch.zeros([attn_mask.shape[0], oh, ow], dtype=image.dtype, device=image.device) # extract all the tiles from the image and create the masks tiles = [] masks = [] for y in range(tiles_y): for x in range(tiles_x): start_x = int(x * (tile_size - overlap_x)) start_y = int(y * (tile_size - overlap_y)) tiles.append(image[:, start_y:start_y+tile_size, start_x:start_x+tile_size, :]) mask = base_mask.clone() mask[:, start_y:start_y+tile_size, start_x:start_x+tile_size] = attn_mask[:, start_y:start_y+tile_size, start_x:start_x+tile_size] masks.append(mask) del mask # 3. Apply the ipadapter to each group of tiles model = model.clone() for i in range(len(tiles)): ipa_args = { "image": tiles[i], "image_negative": image_negative, "weight": weight, "weight_type": weight_type, "combine_embeds": combine_embeds, "start_at": start_at, "end_at": end_at, "attn_mask": masks[i], "unfold_batch": self.unfold_batch, "embeds_scaling": embeds_scaling, "encode_batch_size": encode_batch_size, } # apply the ipadapter to the model without cloning it model, _ = ipadapter_execute(model, ipadapter_model, clip_vision, **ipa_args) return (model, torch.cat(tiles), torch.cat(masks), ) class IPAdapterTiledBatch(IPAdapterTiled): def __init__(self): self.unfold_batch = True @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "sharpening": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), "encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } class IPAdapterEmbeds: def __init__(self): self.unfold_batch = False @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "pos_embed": ("EMBEDS",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "neg_embed": ("EMBEDS",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } RETURN_TYPES = ("MODEL",) FUNCTION = "apply_ipadapter" CATEGORY = "ipadapter/embeds" def apply_ipadapter(self, model, ipadapter, pos_embed, weight, weight_type, start_at, end_at, neg_embed=None, attn_mask=None, clip_vision=None, embeds_scaling='V only'): ipa_args = { "pos_embed": pos_embed, "neg_embed": neg_embed, "weight": weight, "weight_type": weight_type, "start_at": start_at, "end_at": end_at, "attn_mask": attn_mask, "embeds_scaling": embeds_scaling, "unfold_batch": self.unfold_batch, } if 'ipadapter' in ipadapter: ipadapter_model = ipadapter['ipadapter']['model'] clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model'] else: ipadapter_model = ipadapter clip_vision = clip_vision if clip_vision is None and neg_embed is None: raise Exception("Missing CLIPVision model.") del ipadapter return ipadapter_execute(model.clone(), ipadapter_model, clip_vision, **ipa_args) class IPAdapterEmbedsBatch(IPAdapterEmbeds): def __init__(self): self.unfold_batch = True class IPAdapterMS(IPAdapterAdvanced): @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "weight_faceidv2": ("FLOAT", { "default": 1.0, "min": -1, "max": 5.0, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), "layer_weights": ("STRING", { "default": "", "multiline": True }), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), "insightface": ("INSIGHTFACE",), } } CATEGORY = "ipadapter/dev" class IPAdapterClipVisionEnhancer(IPAdapterAdvanced): @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), "enhance_tiles": ("INT", { "default": 2, "min": 1, "max": 16 }), "enhance_ratio": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05 }), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } CATEGORY = "ipadapter/dev" class IPAdapterClipVisionEnhancerBatch(IPAdapterClipVisionEnhancer): def __init__(self): self.unfold_batch = True @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), "enhance_tiles": ("INT", { "default": 2, "min": 1, "max": 16 }), "enhance_ratio": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.05 }), "encode_batch_size": ("INT", { "default": 0, "min": 0, "max": 4096 }), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } class IPAdapterFromParams(IPAdapterAdvanced): @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "ipadapter_params": ("IPADAPTER_PARAMS", ), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "image_negative": ("IMAGE",), "clip_vision": ("CLIP_VISION",), } } CATEGORY = "ipadapter/params" class IPAdapterPreciseStyleTransfer(IPAdapterAdvanced): @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "style_boost": ("FLOAT", { "default": 1.0, "min": -5, "max": 5, "step": 0.05 }), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } class IPAdapterPreciseStyleTransferBatch(IPAdapterPreciseStyleTransfer): def __init__(self): self.unfold_batch = True class IPAdapterPreciseComposition(IPAdapterAdvanced): @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL", ), "ipadapter": ("IPADAPTER", ), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 5, "step": 0.05 }), "composition_boost": ("FLOAT", { "default": 0.0, "min": -5, "max": 5, "step": 0.05 }), "combine_embeds": (["concat", "add", "subtract", "average", "norm average"],), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "embeds_scaling": (['V only', 'K+V', 'K+V w/ C penalty', 'K+mean(V) w/ C penalty'], ), }, "optional": { "image_negative": ("IMAGE",), "attn_mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } class IPAdapterPreciseCompositionBatch(IPAdapterPreciseComposition): def __init__(self): self.unfold_batch = True """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Helpers ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ class IPAdapterEncoder: @classmethod def INPUT_TYPES(s): return {"required": { "ipadapter": ("IPADAPTER",), "image": ("IMAGE",), "weight": ("FLOAT", { "default": 1.0, "min": -1.0, "max": 3.0, "step": 0.01 }), }, "optional": { "mask": ("MASK",), "clip_vision": ("CLIP_VISION",), } } RETURN_TYPES = ("EMBEDS", "EMBEDS",) RETURN_NAMES = ("pos_embed", "neg_embed",) FUNCTION = "encode" CATEGORY = "ipadapter/embeds" def encode(self, ipadapter, image, weight, mask=None, clip_vision=None): if 'ipadapter' in ipadapter: ipadapter_model = ipadapter['ipadapter']['model'] clip_vision = clip_vision if clip_vision is not None else ipadapter['clipvision']['model'] else: ipadapter_model = ipadapter clip_vision = clip_vision if clip_vision is None: raise Exception("Missing CLIPVision model.") is_plus = "proj.3.weight" in ipadapter_model["image_proj"] or "latents" in ipadapter_model["image_proj"] or "perceiver_resampler.proj_in.weight" in ipadapter_model["image_proj"] is_kwai_kolors = is_plus and "layers.0.0.to_out.weight" in ipadapter_model["image_proj"] and ipadapter_model["image_proj"]["layers.0.0.to_out.weight"].shape[0] == 2048 clipvision_size = 224 if not is_kwai_kolors else 336 # resize and crop the mask to 224x224 if mask is not None and mask.shape[1:3] != torch.Size([clipvision_size, clipvision_size]): mask = mask.unsqueeze(1) transforms = T.Compose([ T.CenterCrop(min(mask.shape[2], mask.shape[3])), T.Resize((clipvision_size, clipvision_size), interpolation=T.InterpolationMode.BICUBIC, antialias=True), ]) mask = transforms(mask).squeeze(1) #mask = T.Resize((image.shape[1], image.shape[2]), interpolation=T.InterpolationMode.BICUBIC, antialias=True)(mask.unsqueeze(1)).squeeze(1) img_cond_embeds = encode_image_masked(clip_vision, image, mask, clipvision_size=clipvision_size) if is_plus: img_cond_embeds = img_cond_embeds.penultimate_hidden_states img_uncond_embeds = encode_image_masked(clip_vision, torch.zeros([1, clipvision_size, clipvision_size, 3]), clipvision_size=clipvision_size).penultimate_hidden_states else: img_cond_embeds = img_cond_embeds.image_embeds img_uncond_embeds = torch.zeros_like(img_cond_embeds) if weight != 1: img_cond_embeds = img_cond_embeds * weight return (img_cond_embeds, img_uncond_embeds, ) class IPAdapterCombineEmbeds: @classmethod def INPUT_TYPES(s): return {"required": { "embed1": ("EMBEDS",), "method": (["concat", "add", "subtract", "average", "norm average", "max", "min"], ), }, "optional": { "embed2": ("EMBEDS",), "embed3": ("EMBEDS",), "embed4": ("EMBEDS",), "embed5": ("EMBEDS",), }} RETURN_TYPES = ("EMBEDS",) FUNCTION = "batch" CATEGORY = "ipadapter/embeds" def batch(self, embed1, method, embed2=None, embed3=None, embed4=None, embed5=None): if method=='concat' and embed2 is None and embed3 is None and embed4 is None and embed5 is None: return (embed1, ) embeds = [embed1, embed2, embed3, embed4, embed5] embeds = [embed for embed in embeds if embed is not None] embeds = torch.cat(embeds, dim=0) if method == "add": embeds = torch.sum(embeds, dim=0).unsqueeze(0) elif method == "subtract": embeds = embeds[0] - torch.mean(embeds[1:], dim=0) embeds = embeds.unsqueeze(0) elif method == "average": embeds = torch.mean(embeds, dim=0).unsqueeze(0) elif method == "norm average": embeds = torch.mean(embeds / torch.norm(embeds, dim=0, keepdim=True), dim=0).unsqueeze(0) elif method == "max": embeds = torch.max(embeds, dim=0).values.unsqueeze(0) elif method == "min": embeds = torch.min(embeds, dim=0).values.unsqueeze(0) return (embeds, ) class IPAdapterNoise: @classmethod def INPUT_TYPES(s): return { "required": { "type": (["fade", "dissolve", "gaussian", "shuffle"], ), "strength": ("FLOAT", { "default": 1.0, "min": 0, "max": 1, "step": 0.05 }), "blur": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1 }), }, "optional": { "image_optional": ("IMAGE",), } } RETURN_TYPES = ("IMAGE",) FUNCTION = "make_noise" CATEGORY = "ipadapter/utils" def make_noise(self, type, strength, blur, image_optional=None): if image_optional is None: image = torch.zeros([1, 224, 224, 3]) else: transforms = T.Compose([ T.CenterCrop(min(image_optional.shape[1], image_optional.shape[2])), T.Resize((224, 224), interpolation=T.InterpolationMode.BICUBIC, antialias=True), ]) image = transforms(image_optional.permute([0,3,1,2])).permute([0,2,3,1]) seed = int(torch.sum(image).item()) % 1000000007 # hash the image to get a seed, grants predictability torch.manual_seed(seed) if type == "fade": noise = torch.rand_like(image) noise = image * (1 - strength) + noise * strength elif type == "dissolve": mask = (torch.rand_like(image) < strength).float() noise = torch.rand_like(image) noise = image * (1-mask) + noise * mask elif type == "gaussian": noise = torch.randn_like(image) * strength noise = image + noise elif type == "shuffle": transforms = T.Compose([ T.ElasticTransform(alpha=75.0, sigma=(1-strength)*3.5), T.RandomVerticalFlip(p=1.0), T.RandomHorizontalFlip(p=1.0), ]) image = transforms(image.permute([0,3,1,2])).permute([0,2,3,1]) noise = torch.randn_like(image) * (strength*0.75) noise = image * (1-noise) + noise del image noise = torch.clamp(noise, 0, 1) if blur > 0: if blur % 2 == 0: blur += 1 noise = T.functional.gaussian_blur(noise.permute([0,3,1,2]), blur).permute([0,2,3,1]) return (noise, ) class PrepImageForClipVision: @classmethod def INPUT_TYPES(s): return {"required": { "image": ("IMAGE",), "interpolation": (["LANCZOS", "BICUBIC", "HAMMING", "BILINEAR", "BOX", "NEAREST"],), "crop_position": (["top", "bottom", "left", "right", "center", "pad"],), "sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "prep_image" CATEGORY = "ipadapter/utils" def prep_image(self, image, interpolation="LANCZOS", crop_position="center", sharpening=0.0): size = (224, 224) _, oh, ow, _ = image.shape output = image.permute([0,3,1,2]) if crop_position == "pad": if oh != ow: if oh > ow: pad = (oh - ow) // 2 pad = (pad, 0, pad, 0) elif ow > oh: pad = (ow - oh) // 2 pad = (0, pad, 0, pad) output = T.functional.pad(output, pad, fill=0) else: crop_size = min(oh, ow) x = (ow-crop_size) // 2 y = (oh-crop_size) // 2 if "top" in crop_position: y = 0 elif "bottom" in crop_position: y = oh-crop_size elif "left" in crop_position: x = 0 elif "right" in crop_position: x = ow-crop_size x2 = x+crop_size y2 = y+crop_size output = output[:, :, y:y2, x:x2] imgs = [] for img in output: img = T.ToPILImage()(img) # using PIL for better results img = img.resize(size, resample=Image.Resampling[interpolation]) imgs.append(T.ToTensor()(img)) output = torch.stack(imgs, dim=0) del imgs, img if sharpening > 0: output = contrast_adaptive_sharpening(output, sharpening) output = output.permute([0,2,3,1]) return (output, ) class IPAdapterSaveEmbeds: def __init__(self): self.output_dir = folder_paths.get_output_directory() @classmethod def INPUT_TYPES(s): return {"required": { "embeds": ("EMBEDS",), "filename_prefix": ("STRING", {"default": "IP_embeds"}) }, } RETURN_TYPES = () FUNCTION = "save" OUTPUT_NODE = True CATEGORY = "ipadapter/embeds" def save(self, embeds, filename_prefix): full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) file = f"{filename}_{counter:05}.ipadpt" file = os.path.join(full_output_folder, file) torch.save(embeds, file) return (None, ) class IPAdapterLoadEmbeds: @classmethod def INPUT_TYPES(s): input_dir = folder_paths.get_input_directory() files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')] return {"required": {"embeds": [sorted(files), ]}, } RETURN_TYPES = ("EMBEDS", ) FUNCTION = "load" CATEGORY = "ipadapter/embeds" def load(self, embeds): path = folder_paths.get_annotated_filepath(embeds) return (torch.load(path).cpu(), ) class IPAdapterWeights: @classmethod def INPUT_TYPES(s): return {"required": { "weights": ("STRING", {"default": '1.0, 0.0', "multiline": True }), "timing": (["custom", "linear", "ease_in_out", "ease_in", "ease_out", "random"], { "default": "linear" } ), "frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }), "start_frame": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }), "end_frame": ("INT", {"default": 9999, "min": 0, "max": 9999, "step": 1 }), "add_starting_frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }), "add_ending_frames": ("INT", {"default": 0, "min": 0, "max": 9999, "step": 1 }), "method": (["full batch", "shift batches", "alternate batches"], { "default": "full batch" }), }, "optional": { "image": ("IMAGE",), } } RETURN_TYPES = ("FLOAT", "FLOAT", "INT", "IMAGE", "IMAGE", "WEIGHTS_STRATEGY") RETURN_NAMES = ("weights", "weights_invert", "total_frames", "image_1", "image_2", "weights_strategy") FUNCTION = "weights" CATEGORY = "ipadapter/weights" def weights(self, weights='', timing='custom', frames=0, start_frame=0, end_frame=9999, add_starting_frames=0, add_ending_frames=0, method='full batch', weights_strategy=None, image=None): import random frame_count = image.shape[0] if image is not None else 0 if weights_strategy is not None: weights = weights_strategy["weights"] timing = weights_strategy["timing"] frames = weights_strategy["frames"] start_frame = weights_strategy["start_frame"] end_frame = weights_strategy["end_frame"] add_starting_frames = weights_strategy["add_starting_frames"] add_ending_frames = weights_strategy["add_ending_frames"] method = weights_strategy["method"] frame_count = weights_strategy["frame_count"] else: weights_strategy = { "weights": weights, "timing": timing, "frames": frames, "start_frame": start_frame, "end_frame": end_frame, "add_starting_frames": add_starting_frames, "add_ending_frames": add_ending_frames, "method": method, "frame_count": frame_count, } # convert the string to a list of floats separated by commas or newlines weights = weights.replace("\n", ",") weights = [float(weight) for weight in weights.split(",") if weight.strip() != ""] if timing != "custom": frames = max(frames, 2) start = 0.0 end = 1.0 if len(weights) > 0: start = weights[0] end = weights[-1] weights = [] end_frame = min(end_frame, frames) duration = end_frame - start_frame if start_frame > 0: weights.extend([start] * start_frame) for i in range(duration): n = duration - 1 if timing == "linear": weights.append(start + (end - start) * i / n) elif timing == "ease_in_out": weights.append(start + (end - start) * (1 - math.cos(i / n * math.pi)) / 2) elif timing == "ease_in": weights.append(start + (end - start) * math.sin(i / n * math.pi / 2)) elif timing == "ease_out": weights.append(start + (end - start) * (1 - math.cos(i / n * math.pi / 2))) elif timing == "random": weights.append(random.uniform(start, end)) weights[-1] = end if timing != "random" else weights[-1] if end_frame < frames: weights.extend([end] * (frames - end_frame)) if len(weights) == 0: weights = [0.0] frames = len(weights) # repeat the images for cross fade image_1 = None image_2 = None # Calculate the min and max of the weights min_weight = min(weights) max_weight = max(weights) if image is not None: if "shift" in method: image_1 = image[:-1] image_2 = image[1:] weights = weights * image_1.shape[0] image_1 = image_1.repeat_interleave(frames, 0) image_2 = image_2.repeat_interleave(frames, 0) elif "alternate" in method: image_1 = image[::2].repeat_interleave(2, 0) image_1 = image_1[1:] image_2 = image[1::2].repeat_interleave(2, 0) # Invert the weights relative to their own range mew_weights = weights + [max_weight - (w - min_weight) for w in weights] mew_weights = mew_weights * (image_1.shape[0] // 2) if image.shape[0] % 2: image_1 = image_1[:-1] else: image_2 = image_2[:-1] mew_weights = mew_weights + weights weights = mew_weights image_1 = image_1.repeat_interleave(frames, 0) image_2 = image_2.repeat_interleave(frames, 0) else: weights = weights * image.shape[0] image_1 = image.repeat_interleave(frames, 0) # add starting and ending frames if add_starting_frames > 0: weights = [weights[0]] * add_starting_frames + weights image_1 = torch.cat([image[:1].repeat(add_starting_frames, 1, 1, 1), image_1], dim=0) if image_2 is not None: image_2 = torch.cat([image[:1].repeat(add_starting_frames, 1, 1, 1), image_2], dim=0) if add_ending_frames > 0: weights = weights + [weights[-1]] * add_ending_frames image_1 = torch.cat([image_1, image[-1:].repeat(add_ending_frames, 1, 1, 1)], dim=0) if image_2 is not None: image_2 = torch.cat([image_2, image[-1:].repeat(add_ending_frames, 1, 1, 1)], dim=0) # reverse the weights array weights_invert = weights[::-1] frame_count = len(weights) return (weights, weights_invert, frame_count, image_1, image_2, weights_strategy,) class IPAdapterWeightsFromStrategy(IPAdapterWeights): @classmethod def INPUT_TYPES(s): return {"required": { "weights_strategy": ("WEIGHTS_STRATEGY",), }, "optional": { "image": ("IMAGE",), } } class IPAdapterPromptScheduleFromWeightsStrategy(): @classmethod def INPUT_TYPES(s): return {"required": { "weights_strategy": ("WEIGHTS_STRATEGY",), "prompt": ("STRING", {"default": "", "multiline": True }), }} RETURN_TYPES = ("STRING",) RETURN_NAMES = ("prompt_schedule", ) FUNCTION = "prompt_schedule" CATEGORY = "ipadapter/weights" def prompt_schedule(self, weights_strategy, prompt=""): frames = weights_strategy["frames"] add_starting_frames = weights_strategy["add_starting_frames"] add_ending_frames = weights_strategy["add_ending_frames"] frame_count = weights_strategy["frame_count"] out = "" prompt = [p for p in prompt.split("\n") if p.strip() != ""] if len(prompt) > 0 and frame_count > 0: # prompt_pos must be the same size as the image batch if len(prompt) > frame_count: prompt = prompt[:frame_count] elif len(prompt) < frame_count: prompt += [prompt[-1]] * (frame_count - len(prompt)) if add_starting_frames > 0: out += f"\"0\": \"{prompt[0]}\",\n" for i in range(frame_count): out += f"\"{i * frames + add_starting_frames}\": \"{prompt[i]}\",\n" if add_ending_frames > 0: out += f"\"{frame_count * frames + add_starting_frames}\": \"{prompt[-1]}\",\n" return (out, ) class IPAdapterCombineWeights: @classmethod def INPUT_TYPES(s): return { "required": { "weights_1": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }), "weights_2": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05 }), }} RETURN_TYPES = ("FLOAT", "INT") RETURN_NAMES = ("weights", "count") FUNCTION = "combine" CATEGORY = "ipadapter/utils" def combine(self, weights_1, weights_2): if not isinstance(weights_1, list): weights_1 = [weights_1] if not isinstance(weights_2, list): weights_2 = [weights_2] weights = weights_1 + weights_2 return (weights, len(weights), ) class IPAdapterRegionalConditioning: @classmethod def INPUT_TYPES(s): return {"required": { #"set_cond_area": (["default", "mask bounds"],), "image": ("IMAGE",), "image_weight": ("FLOAT", { "default": 1.0, "min": -1.0, "max": 3.0, "step": 0.05 }), "prompt_weight": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 10.0, "step": 0.05 }), "weight_type": (WEIGHT_TYPES, ), "start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), "end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), }, "optional": { "mask": ("MASK",), "positive": ("CONDITIONING",), "negative": ("CONDITIONING",), }} RETURN_TYPES = ("IPADAPTER_PARAMS", "CONDITIONING", "CONDITIONING", ) RETURN_NAMES = ("IPADAPTER_PARAMS", "POSITIVE", "NEGATIVE") FUNCTION = "conditioning" CATEGORY = "ipadapter/params" def conditioning(self, image, image_weight, prompt_weight, weight_type, start_at, end_at, mask=None, positive=None, negative=None): set_area_to_bounds = False #if set_cond_area == "default" else True if mask is not None: if positive is not None: positive = conditioning_set_values(positive, {"mask": mask, "set_area_to_bounds": set_area_to_bounds, "mask_strength": prompt_weight}) if negative is not None: negative = conditioning_set_values(negative, {"mask": mask, "set_area_to_bounds": set_area_to_bounds, "mask_strength": prompt_weight}) ipadapter_params = { "image": [image], "attn_mask": [mask], "weight": [image_weight], "weight_type": [weight_type], "start_at": [start_at], "end_at": [end_at], } return (ipadapter_params, positive, negative, ) class IPAdapterCombineParams: @classmethod def INPUT_TYPES(s): return {"required": { "params_1": ("IPADAPTER_PARAMS",), "params_2": ("IPADAPTER_PARAMS",), }, "optional": { "params_3": ("IPADAPTER_PARAMS",), "params_4": ("IPADAPTER_PARAMS",), "params_5": ("IPADAPTER_PARAMS",), }} RETURN_TYPES = ("IPADAPTER_PARAMS",) FUNCTION = "combine" CATEGORY = "ipadapter/params" def combine(self, params_1, params_2, params_3=None, params_4=None, params_5=None): ipadapter_params = { "image": params_1["image"] + params_2["image"], "attn_mask": params_1["attn_mask"] + params_2["attn_mask"], "weight": params_1["weight"] + params_2["weight"], "weight_type": params_1["weight_type"] + params_2["weight_type"], "start_at": params_1["start_at"] + params_2["start_at"], "end_at": params_1["end_at"] + params_2["end_at"], } if params_3 is not None: ipadapter_params["image"] += params_3["image"] ipadapter_params["attn_mask"] += params_3["attn_mask"] ipadapter_params["weight"] += params_3["weight"] ipadapter_params["weight_type"] += params_3["weight_type"] ipadapter_params["start_at"] += params_3["start_at"] ipadapter_params["end_at"] += params_3["end_at"] if params_4 is not None: ipadapter_params["image"] += params_4["image"] ipadapter_params["attn_mask"] += params_4["attn_mask"] ipadapter_params["weight"] += params_4["weight"] ipadapter_params["weight_type"] += params_4["weight_type"] ipadapter_params["start_at"] += params_4["start_at"] ipadapter_params["end_at"] += params_4["end_at"] if params_5 is not None: ipadapter_params["image"] += params_5["image"] ipadapter_params["attn_mask"] += params_5["attn_mask"] ipadapter_params["weight"] += params_5["weight"] ipadapter_params["weight_type"] += params_5["weight_type"] ipadapter_params["start_at"] += params_5["start_at"] ipadapter_params["end_at"] += params_5["end_at"] return (ipadapter_params, ) """ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Register ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ NODE_CLASS_MAPPINGS = { # Main Apply Nodes "IPAdapter": IPAdapterSimple, "IPAdapterAdvanced": IPAdapterAdvanced, "IPAdapterBatch": IPAdapterBatch, "IPAdapterFaceID": IPAdapterFaceID, "IPAAdapterFaceIDBatch": IPAAdapterFaceIDBatch, "IPAdapterTiled": IPAdapterTiled, "IPAdapterTiledBatch": IPAdapterTiledBatch, "IPAdapterEmbeds": IPAdapterEmbeds, "IPAdapterEmbedsBatch": IPAdapterEmbedsBatch, "IPAdapterStyleComposition": IPAdapterStyleComposition, "IPAdapterStyleCompositionBatch": IPAdapterStyleCompositionBatch, "IPAdapterMS": IPAdapterMS, "IPAdapterClipVisionEnhancer": IPAdapterClipVisionEnhancer, "IPAdapterClipVisionEnhancerBatch": IPAdapterClipVisionEnhancerBatch, "IPAdapterFromParams": IPAdapterFromParams, "IPAdapterPreciseStyleTransfer": IPAdapterPreciseStyleTransfer, "IPAdapterPreciseStyleTransferBatch": IPAdapterPreciseStyleTransferBatch, "IPAdapterPreciseComposition": IPAdapterPreciseComposition, "IPAdapterPreciseCompositionBatch": IPAdapterPreciseCompositionBatch, # Loaders "IPAdapterUnifiedLoader": IPAdapterUnifiedLoader, "IPAdapterUnifiedLoaderFaceID": IPAdapterUnifiedLoaderFaceID, "IPAdapterModelLoader": IPAdapterModelLoader, "IPAdapterInsightFaceLoader": IPAdapterInsightFaceLoader, "IPAdapterUnifiedLoaderCommunity": IPAdapterUnifiedLoaderCommunity, # Helpers "IPAdapterEncoder": IPAdapterEncoder, "IPAdapterCombineEmbeds": IPAdapterCombineEmbeds, "IPAdapterNoise": IPAdapterNoise, "PrepImageForClipVision": PrepImageForClipVision, "IPAdapterSaveEmbeds": IPAdapterSaveEmbeds, "IPAdapterLoadEmbeds": IPAdapterLoadEmbeds, "IPAdapterWeights": IPAdapterWeights, "IPAdapterCombineWeights": IPAdapterCombineWeights, "IPAdapterWeightsFromStrategy": IPAdapterWeightsFromStrategy, "IPAdapterPromptScheduleFromWeightsStrategy": IPAdapterPromptScheduleFromWeightsStrategy, "IPAdapterRegionalConditioning": IPAdapterRegionalConditioning, "IPAdapterCombineParams": IPAdapterCombineParams, } NODE_DISPLAY_NAME_MAPPINGS = { # Main Apply Nodes "IPAdapter": "IPAdapter", "IPAdapterAdvanced": "IPAdapter Advanced", "IPAdapterBatch": "IPAdapter Batch (Adv.)", "IPAdapterFaceID": "IPAdapter FaceID", "IPAAdapterFaceIDBatch": "IPAdapter FaceID Batch", "IPAdapterTiled": "IPAdapter Tiled", "IPAdapterTiledBatch": "IPAdapter Tiled Batch", "IPAdapterEmbeds": "IPAdapter Embeds", "IPAdapterEmbedsBatch": "IPAdapter Embeds Batch", "IPAdapterStyleComposition": "IPAdapter Style & Composition SDXL", "IPAdapterStyleCompositionBatch": "IPAdapter Style & Composition Batch SDXL", "IPAdapterMS": "IPAdapter Mad Scientist", "IPAdapterClipVisionEnhancer": "IPAdapter ClipVision Enhancer", "IPAdapterClipVisionEnhancerBatch": "IPAdapter ClipVision Enhancer Batch", "IPAdapterFromParams": "IPAdapter from Params", "IPAdapterPreciseStyleTransfer": "IPAdapter Precise Style Transfer", "IPAdapterPreciseStyleTransferBatch": "IPAdapter Precise Style Transfer Batch", "IPAdapterPreciseComposition": "IPAdapter Precise Composition", "IPAdapterPreciseCompositionBatch": "IPAdapter Precise Composition Batch", # Loaders "IPAdapterUnifiedLoader": "IPAdapter Unified Loader", "IPAdapterUnifiedLoaderFaceID": "IPAdapter Unified Loader FaceID", "IPAdapterModelLoader": "IPAdapter Model Loader", "IPAdapterInsightFaceLoader": "IPAdapter InsightFace Loader", "IPAdapterUnifiedLoaderCommunity": "IPAdapter Unified Loader Community", # Helpers "IPAdapterEncoder": "IPAdapter Encoder", "IPAdapterCombineEmbeds": "IPAdapter Combine Embeds", "IPAdapterNoise": "IPAdapter Noise", "PrepImageForClipVision": "Prep Image For ClipVision", "IPAdapterSaveEmbeds": "IPAdapter Save Embeds", "IPAdapterLoadEmbeds": "IPAdapter Load Embeds", "IPAdapterWeights": "IPAdapter Weights", "IPAdapterWeightsFromStrategy": "IPAdapter Weights From Strategy", "IPAdapterPromptScheduleFromWeightsStrategy": "Prompt Schedule From Weights Strategy", "IPAdapterCombineWeights": "IPAdapter Combine Weights", "IPAdapterRegionalConditioning": "IPAdapter Regional Conditioning", "IPAdapterCombineParams": "IPAdapter Combine Params", }