Spaces:
Sleeping
Sleeping
import gradio as gr | |
import faiss | |
import numpy as np | |
import openai | |
from sentence_transformers import SentenceTransformer | |
from nltk.tokenize import sent_tokenize | |
# Load the Ubuntu manual from a .txt file | |
with open("/content/ubuntu_manual.txt", "r", encoding="utf-8") as file: | |
full_text = file.read() | |
# Function to chunk the text into smaller pieces | |
def chunk_text(text, chunk_size=500): # Larger chunks | |
sentences = sent_tokenize(text) | |
chunks = [] | |
current_chunk = [] | |
for sentence in sentences: | |
if len(current_chunk) + len(sentence.split()) <= chunk_size: | |
current_chunk.append(sentence) | |
else: | |
chunks.append(" ".join(current_chunk)) | |
current_chunk = [sentence] | |
if current_chunk: | |
chunks.append(" ".join(current_chunk)) | |
return chunks | |
# Apply chunking to the entire text | |
manual_chunks = chunk_text(full_text, chunk_size=500) | |
# Load your FAISS index | |
index = faiss.read_index("path/to/your/faiss_index.bin") | |
# Load your embedding model | |
embedding_model = SentenceTransformer('your_embedding_model_name') | |
# OpenAI API key | |
openai.api_key = 'your-openai-api-key' | |
# Function to create embeddings | |
def embed_text(text_list): | |
return np.array(embedding_model.encode(text_list), dtype=np.float32) | |
# Function to retrieve relevant chunks for a user query | |
def retrieve_chunks(query, k=5): | |
query_embedding = embed_text([query]) | |
# Search the FAISS index | |
distances, indices = index.search(query_embedding, k=k) | |
# Debugging: Print out the distances and indices | |
print("Distances:", distances) | |
print("Indices:", indices) | |
# Check if indices are valid | |
if len(indices[0]) == 0: | |
return [] | |
# Ensure indices are within bounds | |
valid_indices = [i for i in indices[0] if i < len(manual_chunks)] | |
if not valid_indices: | |
return [] | |
# Retrieve relevant chunks | |
relevant_chunks = [manual_chunks[i] for i in valid_indices] | |
return relevant_chunks | |
# Function to truncate long inputs | |
def truncate_input(text, max_length=512): | |
tokens = generator_tokenizer.encode(text, truncation=True, max_length=max_length, return_tensors="pt") | |
return tokens | |
# Function to perform RAG: Retrieve chunks and generate a response | |
def rag_response(query, k=5, max_new_tokens=150): | |
# Step 1: Retrieve relevant chunks | |
relevant_chunks = retrieve_chunks(query, k=k) | |
if not relevant_chunks: | |
return "Sorry, I couldn't find relevant information." | |
# Step 2: Combine the query with retrieved chunks | |
augmented_input = query + "\n" + "\n".join(relevant_chunks) | |
# Truncate and encode the input | |
inputs = truncate_input(augmented_input) | |
# Generate response | |
outputs = generator_model.generate(inputs, max_new_tokens=max_new_tokens) | |
generated_text = generator_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=rag_response, | |
inputs="text", | |
outputs="text", | |
title="RAG Chatbot with FAISS and GPT-3.5", | |
description="Ask me anything!" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |