Spaces:
Sleeping
Sleeping
import gradio as gr | |
import nltk | |
from nltk.tokenize import sent_tokenize | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import faiss | |
import numpy as np | |
import openai | |
# Set up OpenAI API key | |
openai.api_key = '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' | |
# Download NLTK data | |
nltk.download('punkt') | |
nltk.download('punkt_tab') | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased") | |
model = AutoModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased") | |
manual_path = "ubuntu_manual.txt" | |
# Load the Ubuntu manual from a .txt file | |
with open(manual_path, "r", encoding="utf-8") as file: | |
full_text = file.read() | |
# Function to chunk the text into smaller pieces | |
def chunk_text(text, chunk_size=500): | |
sentences = sent_tokenize(text) | |
chunks = [] | |
current_chunk = [] | |
for sentence in sentences: | |
if len(current_chunk) + len(sentence.split()) <= chunk_size: | |
current_chunk.append(sentence) | |
else: | |
chunks.append(" ".join(current_chunk)) | |
current_chunk = [sentence] | |
if current_chunk: | |
chunks.append(" ".join(current_chunk)) | |
return chunks | |
# Apply chunking to the entire text | |
manual_chunks = chunk_text(full_text, chunk_size=500) | |
# Function to generate embeddings for each chunk | |
def embed_text(texts): | |
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy() # CLS token representation | |
return embeddings | |
# Generate embeddings for the chunks | |
chunk_embeddings = embed_text(manual_chunks) | |
# Convert embeddings to a numpy array | |
chunk_embeddings_np = np.array(chunk_embeddings) | |
# Create a FAISS index and add the embeddings | |
dimension = chunk_embeddings_np.shape[1] | |
index = faiss.IndexFlatL2(dimension) | |
index.add(chunk_embeddings_np) | |
# Function to retrieve relevant chunks for a user query and print indices and distances | |
def retrieve_chunks(query, k=5): | |
query_embedding = embed_text([query]) | |
distances, indices = index.search(query_embedding, k=k) | |
valid_indices = [i for i in indices[0] if i < len(manual_chunks)] | |
relevant_chunks = [manual_chunks[i] for i in valid_indices] | |
# Print indices and distances | |
for i, idx in enumerate(valid_indices): | |
print(f"Index: {idx}, Distance: {distances[0][i]}") | |
return relevant_chunks, indices[0], distances[0] | |
# Function to perform RAG: Retrieve chunks and generate a response using GPT-3.5 | |
def rag_response_gpt3_5(query, k=3, max_tokens=150): | |
relevant_chunks, indices, distances = retrieve_chunks(query, k=k) | |
if not relevant_chunks: | |
return "Sorry, I couldn't find relevant information." | |
# Combine the query with a limited number of retrieved chunks | |
augmented_input = query + "\n" + "\n".join(relevant_chunks) | |
# Tokenize the augmented input and ensure it fits within model token limits | |
input_ids = tokenizer(augmented_input, return_tensors="pt").input_ids[0] | |
if len(input_ids) > 512: | |
input_ids = input_ids[:512] | |
augmented_input = tokenizer.decode(input_ids, skip_special_tokens=True) | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": augmented_input} | |
], | |
max_tokens=max_tokens, | |
temperature=0.7 | |
) | |
return response.choices[0].message['content'].strip() | |
# Chat history to maintain conversation context | |
def chatbot(query, history): | |
if history is None: | |
history = [] | |
# Retrieve relevant chunks along with their indices and distances | |
relevant_chunks, indices, distances = retrieve_chunks(query) | |
# Print the indices and distances of the retrieved chunks | |
print(f"Retrieved Indices: {indices}") | |
print(f"Retrieved Distances: {distances}") | |
response = rag_response_gpt3_5(query) | |
history.append((query, response)) | |
# Combine all messages into a single string | |
chat_history = "" | |
for user_input, bot_response in history: | |
chat_history += f"User: {user_input}\nBot: {bot_response}\n\n" | |
return chat_history, history | |
# Create the Gradio interface | |
iface = gr.Interface(fn=chatbot, | |
inputs=["text", "state"], | |
outputs=["text", "state"], | |
title="Ubuntu Manual Chatbot", | |
description="Ask me anything about the Ubuntu manual.") | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |