FridayMaster commited on
Commit
32c8def
1 Parent(s): 68656c4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -9,6 +9,7 @@ import nltk
9
  # Download the required NLTK data
10
  nltk.download('punkt')
11
  nltk.download('punkt_tab')
 
12
  # Paths to your files
13
  faiss_path = "manual_chunked_faiss_index_500.bin"
14
  manual_path = "ubuntu_manual.txt"
@@ -48,7 +49,11 @@ except Exception as e:
48
  raise RuntimeError(f"Failed to load FAISS index: {e}")
49
 
50
  # Load the tokenizer and model for embeddings
51
- embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
 
 
 
 
52
 
53
  # OpenAI API key
54
  openai.api_key = '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'
@@ -115,6 +120,8 @@ def rag_response(query, k=5, max_tokens=150):
115
  except Exception as e:
116
  return f"An error occurred: {e}", [], []
117
 
 
 
118
  # Gradio Interface
119
  def format_output(response, distances, indices):
120
  formatted_response = f"Response: {response}\n\nDistances: {distances}\n\nIndices: {indices}"
 
9
  # Download the required NLTK data
10
  nltk.download('punkt')
11
  nltk.download('punkt_tab')
12
+
13
  # Paths to your files
14
  faiss_path = "manual_chunked_faiss_index_500.bin"
15
  manual_path = "ubuntu_manual.txt"
 
49
  raise RuntimeError(f"Failed to load FAISS index: {e}")
50
 
51
  # Load the tokenizer and model for embeddings
52
+ from transformers import AutoTokenizer, AutoModel
53
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
54
+ model = AutoModel.from_pretrained("microsoft/MiniLM-L12-H384-uncased")
55
+
56
+ embedding_model = SentenceTransformer('microsoft/MiniLM-L12-H384-uncased')
57
 
58
  # OpenAI API key
59
  openai.api_key = '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'
 
120
  except Exception as e:
121
  return f"An error occurred: {e}", [], []
122
 
123
+ # Gradio Interface
124
+
125
  # Gradio Interface
126
  def format_output(response, distances, indices):
127
  formatted_response = f"Response: {response}\n\nDistances: {distances}\n\nIndices: {indices}"