import gradio as gr import faiss import numpy as np import openai from sentence_transformers import SentenceTransformer from nltk.tokenize import sent_tokenize # Load the Ubuntu manual from a .txt file with open("/content/ubuntu_manual.txt", "r", encoding="utf-8") as file: full_text = file.read() # Function to chunk the text into smaller pieces def chunk_text(text, chunk_size=500): # Larger chunks sentences = sent_tokenize(text) chunks = [] current_chunk = [] for sentence in sentences: if len(current_chunk) + len(sentence.split()) <= chunk_size: current_chunk.append(sentence) else: chunks.append(" ".join(current_chunk)) current_chunk = [sentence] if current_chunk: chunks.append(" ".join(current_chunk)) return chunks # Apply chunking to the entire text manual_chunks = chunk_text(full_text, chunk_size=500) # Load your FAISS index index = faiss.read_index("path/to/your/faiss_index.bin") # Load your embedding model embedding_model = SentenceTransformer('your_embedding_model_name') # OpenAI API key openai.api_key = 'your-openai-api-key' # Function to create embeddings def embed_text(text_list): return np.array(embedding_model.encode(text_list), dtype=np.float32) # Function to retrieve relevant chunks for a user query def retrieve_chunks(query, k=5): query_embedding = embed_text([query]) # Search the FAISS index distances, indices = index.search(query_embedding, k=k) # Debugging: Print out the distances and indices print("Distances:", distances) print("Indices:", indices) # Check if indices are valid if len(indices[0]) == 0: return [] # Ensure indices are within bounds valid_indices = [i for i in indices[0] if i < len(manual_chunks)] if not valid_indices: return [] # Retrieve relevant chunks relevant_chunks = [manual_chunks[i] for i in valid_indices] return relevant_chunks # Function to truncate long inputs def truncate_input(text, max_length=512): tokens = generator_tokenizer.encode(text, truncation=True, max_length=max_length, return_tensors="pt") return tokens # Function to perform RAG: Retrieve chunks and generate a response def rag_response(query, k=5, max_new_tokens=150): # Step 1: Retrieve relevant chunks relevant_chunks = retrieve_chunks(query, k=k) if not relevant_chunks: return "Sorry, I couldn't find relevant information." # Step 2: Combine the query with retrieved chunks augmented_input = query + "\n" + "\n".join(relevant_chunks) # Truncate and encode the input inputs = truncate_input(augmented_input) # Generate response outputs = generator_model.generate(inputs, max_new_tokens=max_new_tokens) generated_text = generator_tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Gradio Interface iface = gr.Interface( fn=rag_response, inputs="text", outputs="text", title="RAG Chatbot with FAISS and GPT-3.5", description="Ask me anything!" ) if __name__ == "__main__": iface.launch()