SceneDreamer / app.py
FrozenBurning's picture
Update app.py
14a0989 verified
raw
history blame
5.61 kB
import os
import sys
import html
import glob
import uuid
import hashlib
import requests
from tqdm import tqdm
os.system("git clone https://github.com/FrozenBurning/SceneDreamer.git")
os.system("cp -r SceneDreamer/* ./")
os.system("bash install.sh")
import os
import torch
import torch.nn as nn
import importlib
import argparse
from imaginaire.config import Config
from imaginaire.utils.cudnn import init_cudnn
import gradio as gr
from PIL import Image
class WrappedModel(nn.Module):
r"""Dummy wrapping the module.
"""
def __init__(self, module):
super(WrappedModel, self).__init__()
self.module = module
def forward(self, *args, **kwargs):
r"""PyTorch module forward function overload."""
return self.module(*args, **kwargs)
def parse_args():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--config', type=str, default='./configs/scenedreamer_inference.yaml', help='Path to the training config file.')
parser.add_argument('--checkpoint', default='./scenedreamer_released.pt',
help='Checkpoint path.')
parser.add_argument('--output_dir', type=str, default='./test/',
help='Location to save the image outputs')
parser.add_argument('--seed', type=int, default=8888,
help='Random seed.')
args = parser.parse_args()
return args
args = parse_args()
cfg = Config(args.config)
# Initialize cudnn.
init_cudnn(cfg.cudnn.deterministic, cfg.cudnn.benchmark)
# Initialize data loaders and models.
lib_G = importlib.import_module(cfg.gen.type)
net_G = lib_G.Generator(cfg.gen, cfg.data)
net_G = net_G.to('cuda')
net_G = WrappedModel(net_G)
if args.checkpoint == '':
raise NotImplementedError("No checkpoint is provided for inference!")
# Load checkpoint.
# trainer.load_checkpoint(cfg, args.checkpoint)
checkpoint = torch.load(args.checkpoint, map_location='cpu')
net_G.load_state_dict(checkpoint['net_G'])
# Do inference.
net_G = net_G.module
net_G.eval()
for name, param in net_G.named_parameters():
param.requires_grad = False
torch.cuda.empty_cache()
world_dir = os.path.join(args.output_dir)
os.makedirs(world_dir, exist_ok=True)
def get_bev(seed):
print('[PCGGenerator] Generating BEV scene representation...')
os.system('python terrain_generator.py --size {} --seed {} --outdir {}'.format(net_G.voxel.sample_size, seed, world_dir))
heightmap_path = os.path.join(world_dir, 'heightmap.png')
semantic_path = os.path.join(world_dir, 'colormap.png')
heightmap = Image.open(heightmap_path)
semantic = Image.open(semantic_path)
return semantic, heightmap
def get_video(seed, num_frames, reso_h, reso_w):
device = torch.device('cuda')
rng_cuda = torch.Generator(device=device)
rng_cuda = rng_cuda.manual_seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
net_G.voxel.next_world(device, world_dir, checkpoint)
cam_mode = cfg.inference_args.camera_mode
cfg.inference_args.cam_maxstep = num_frames
cfg.inference_args.resolution_hw = [reso_h, reso_w]
current_outdir = os.path.join(world_dir, 'camera_{:02d}'.format(cam_mode))
os.makedirs(current_outdir, exist_ok=True)
z = torch.empty(1, net_G.style_dims, dtype=torch.float32, device=device)
z.normal_(generator=rng_cuda)
net_G.inference_givenstyle(z, current_outdir, **vars(cfg.inference_args))
return os.path.join(current_outdir, 'rgb_render.mp4')
markdown=f'''
# SceneDreamer: Unbounded 3D Scene Generation from 2D Image Collections
Authored by Zhaoxi Chen, Guangcong Wang, Ziwei Liu
### Useful links:
- [Official Github Repo](https://github.com/FrozenBurning/SceneDreamer)
- [Project Page](https://scene-dreamer.github.io/)
- [arXiv Link](https://arxiv.org/abs/2302.01330)
Licensed under the S-Lab License.
We offer a sampled scene whose BEVs are shown on the right. You can also use the button "Generate BEV" to randomly sample a new 3D world represented by a height map and a semantic map. But it requires a long time.
To render video, push the button "Render" to generate a camera trajectory flying through the world. You can specify rendering options as shown below!
'''
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(markdown)
with gr.Column():
with gr.Row():
with gr.Column():
semantic = gr.Image(value='./test/colormap.png',type="pil", height=512, width=512)
with gr.Column():
height = gr.Image(value='./test/heightmap.png', type="pil", height=512, width=512)
with gr.Row():
# with gr.Column():
# image = gr.Image(type='pil', shape(540, 960))
with gr.Column():
video = gr.Video()
with gr.Row():
num_frames = gr.Slider(minimum=10, maximum=200, value=20, step=1, label='Number of rendered frames')
user_seed = gr.Slider(minimum=0, maximum=999999, value=8888, step=1, label='Random seed')
resolution_h = gr.Slider(minimum=256, maximum=2160, value=270, step=1, label='Height of rendered image')
resolution_w = gr.Slider(minimum=256, maximum=3840, value=480, step=1, label='Width of rendered image')
with gr.Row():
btn = gr.Button(value="Generate BEV")
btn_2=gr.Button(value="Render")
btn.click(get_bev,[user_seed],[semantic, height])
btn_2.click(get_video,[user_seed, num_frames, resolution_h, resolution_w], [video])
demo.launch(debug=True)