OMG / src /prompt_attention /p2p_attention.py
Fucius's picture
Upload 52 files
ad5354d verified
raw
history blame
6.24 kB
from typing import Optional, Union, Tuple, List, Callable, Dict
import torch
import torch.nn.functional as nnf
import numpy as np
import abc
import src.prompt_attention.p2p_utils as p2p_utils
import src.prompt_attention.seq_aligner as seq_aligner
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
# return self.num_att_layers if self.low_resource else 0
return 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
if self.low_resource:
attn = self.forward(attn, is_cross, place_in_unet)
else:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self, low_resource=False, width=None, height=None):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
self.low_resource = low_resource
self.width = width
self.height = height
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
# if attn.shape[1] <= att_size * 64:
return attn
def between_steps(self):
if self.save_global_store:
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
else:
self.attention_store = self.step_store
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in
self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self, width, height, low_resolution=False, save_global_store=False):
super(AttentionStore, self).__init__(low_resolution, width, height)
self.step_store = self.get_empty_store()
self.attention_store = {}
self.save_global_store = save_global_store
class AttentionControlEdit(AttentionStore, abc.ABC):
def __init__(self, prompts, num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend=None, width=None, height=None, tokenizer=None, device=None):
super(AttentionControlEdit, self).__init__(width, height)
self.batch_size = len(prompts)
self.cross_replace_alpha = p2p_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps,
tokenizer).to(device)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend
def step_callback(self, x_t):
print("step_callback")
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= self.width * self.height:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // (self.batch_size)
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (
1 - alpha_words) * attn_repalce
attn[1:] = attn_repalce_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
class AttentionReplace(AttentionControlEdit):
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, width, height,
local_blend = None, tokenizer=None, device=None, dtype=None):
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, width, height, tokenizer=tokenizer, device=device)
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(dtype=dtype, device=device)
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)