Spaces:
Runtime error
Runtime error
from typing import Optional, Union, Tuple, List, Callable, Dict | |
import torch | |
import torch.nn.functional as nnf | |
import numpy as np | |
import abc | |
import src.prompt_attention.p2p_utils as p2p_utils | |
import src.prompt_attention.seq_aligner as seq_aligner | |
class AttentionControl(abc.ABC): | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def num_uncond_att_layers(self): | |
# return self.num_att_layers if self.low_resource else 0 | |
return 0 | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
raise NotImplementedError | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
if self.cur_att_layer >= self.num_uncond_att_layers: | |
if self.low_resource: | |
attn = self.forward(attn, is_cross, place_in_unet) | |
else: | |
h = attn.shape[0] | |
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | |
self.cur_att_layer = 0 | |
self.cur_step += 1 | |
self.between_steps() | |
return attn | |
def reset(self): | |
self.cur_step = 0 | |
self.cur_att_layer = 0 | |
def __init__(self, low_resource=False, width=None, height=None): | |
self.cur_step = 0 | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
self.low_resource = low_resource | |
self.width = width | |
self.height = height | |
class AttentionStore(AttentionControl): | |
def get_empty_store(): | |
return {"down_cross": [], "mid_cross": [], "up_cross": [], | |
"down_self": [], "mid_self": [], "up_self": []} | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
# if attn.shape[1] <= att_size * 64: | |
return attn | |
def between_steps(self): | |
if self.save_global_store: | |
if len(self.attention_store) == 0: | |
self.attention_store = self.step_store | |
else: | |
for key in self.attention_store: | |
for i in range(len(self.attention_store[key])): | |
self.attention_store[key][i] += self.step_store[key][i] | |
else: | |
self.attention_store = self.step_store | |
self.step_store = self.get_empty_store() | |
def get_average_attention(self): | |
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in | |
self.attention_store} | |
return average_attention | |
def reset(self): | |
super(AttentionStore, self).reset() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
def __init__(self, width, height, low_resolution=False, save_global_store=False): | |
super(AttentionStore, self).__init__(low_resolution, width, height) | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
self.save_global_store = save_global_store | |
class AttentionControlEdit(AttentionStore, abc.ABC): | |
def __init__(self, prompts, num_steps: int, | |
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
self_replace_steps: Union[float, Tuple[float, float]], | |
local_blend=None, width=None, height=None, tokenizer=None, device=None): | |
super(AttentionControlEdit, self).__init__(width, height) | |
self.batch_size = len(prompts) | |
self.cross_replace_alpha = p2p_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, | |
tokenizer).to(device) | |
if type(self_replace_steps) is float: | |
self_replace_steps = 0, self_replace_steps | |
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) | |
self.local_blend = local_blend | |
def step_callback(self, x_t): | |
print("step_callback") | |
if self.local_blend is not None: | |
x_t = self.local_blend(x_t, self.attention_store) | |
return x_t | |
def replace_self_attention(self, attn_base, att_replace): | |
if att_replace.shape[2] <= self.width * self.height: | |
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | |
else: | |
return att_replace | |
def replace_cross_attention(self, attn_base, att_replace): | |
raise NotImplementedError | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | |
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): | |
h = attn.shape[0] // (self.batch_size) | |
attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | |
attn_base, attn_repalce = attn[0], attn[1:] | |
if is_cross: | |
alpha_words = self.cross_replace_alpha[self.cur_step] | |
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + ( | |
1 - alpha_words) * attn_repalce | |
attn[1:] = attn_repalce_new | |
else: | |
attn[1:] = self.replace_self_attention(attn_base, attn_repalce) | |
attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | |
return attn | |
class AttentionReplace(AttentionControlEdit): | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, width, height, | |
local_blend = None, tokenizer=None, device=None, dtype=None): | |
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, width, height, tokenizer=tokenizer, device=device) | |
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(dtype=dtype, device=device) | |
def replace_cross_attention(self, attn_base, att_replace): | |
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) | |