File size: 32,938 Bytes
e149140 d195d4f e149140 d195d4f e149140 d195d4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
---
title: factool_dev
app_file: ./app.py
sdk: gradio
sdk_version: 3.39.0
---
## FacTool: Factuality Detection in Generative AI
[**Factuality Leaderboard**](https://github.com/GAIR-NLP/factool#factuality-leaderboard) |
[**Installation**](https://github.com/GAIR-NLP/factool#installation) |
[**Quick Start**](https://github.com/GAIR-NLP/factool#quick-start) |
[**ChatGPT Plugin with FacTool**](https://github.com/GAIR-NLP/factool#chatgpt-plugin-with-factool) |
[**Citation**](https://github.com/GAIR-NLP/factool#citation) |
This repository contains the source code and plugin configuration for our [paper](https://arxiv.org/abs/2307.13528):
Factool is a tool augmented framework for detecting factual errors of texts generated by large language models (e.g., ChatGPT).
Factool now supports 4 tasks:
* **knowledge-based QA**: Factool detects factual errors in knowledge-based QA.
* **code generation**: Factool detects execution errors in code generation.
* **mathematical reasoning**: Factool detects calculation errors in mathematical reasoning.
* **scientific literature review**: Factool detects hallucinated scientific literatures.
<p align="center">
<img src="figs/factool.png" width="300"/>
</p>
Demo of Knowledge-based QA:
![Alt Text](./figs/factool_plugin_kbqa.gif)
![Alt Text](./figs/factool_chinese.gif)
![Alt Text](./figs/factool_japanese.gif)
## Factuality Leaderboard
Our factuality leaderboard shows the factual accuracy of different chatbots evaluated by FacTool.
| LLMs | Weighted Claim-Level Accuracy | Response-Level Accuracy |
| -------- | -------- | -------- |
| GPT-4 | **75.60** | **43.33** |
| ChatGPT | 68.63 | 36.67 |
| Claude-v1 | 63.95 | 26.67 |
| Bard | 61.15 | 33.33 |
| Vicuna-13B | 50.35 | 21.67 |
## Installation
* #### For General User
```bash
pip install factool
```
* #### For Developer
```bash
git clone [email protected]:GAIR-NLP/factool.git
cd factool
pip install -e .
```
## Quick Start
### API Key Preparation
* get your OpenAI API key from [here](https://beta.openai.com/). This is used in all scenarios (Knowledge-based QA, Code, Math, Scientific Literature Review).
* get your Serper API key from [here](https://serper.dev/). This is only used in Knowledge-based QA.
* get your Scraper API key from [here](https://www.scraperapi.com/). This is only used in Scientific Literature Review.
### General Usage
You could also directly refer to [./example/example.py](https://github.com/GAIR-NLP/factool/blob/main/example/example.py) and [example_inputs.jsonl](https://github.com/GAIR-NLP/factool/blob/main/example/example_inputs.jsonl) for general usage.
<details>
<summary>General Usage (click to toggle the content)</summary>
```python
export OPENAI_API_KEY=... # this is required in all tasks
export SERPER_API_KEY=... # this is required only in knowledge-based QA
export SCRAPER_API_KEY=... # this is requried only in scientific literature review
```
```python
# Initialize a list of inputs. "entry_point" is only needed when the task is "code generation"
# please refer to example_inputs.jsonl for example inputs for each category
inputs = [
{"prompt": "<prompt1>", "response": "<response1>", "category": "<category1>", "entry_point": "<entry_point_1>"},
{"prompt": "<prompt2>", "response": "<response2>", "category": "<category2>", "entry_point": "<entry_point_2>"},
...
]
```
where
* `prompt`: The prompt for the model to generate the response.
* `response`: The response generated by the model.
* `category`: The category of the task. it could be:
* `kbqa`
* `code`
* `math`
* `scientific`
* `entry_point`: The function name of the code snippet to be fact-checked in the response. Could be "null" if the category of the task is not `code`.
```python
from factool import Factool
# Initialize a Factool instance with the specified keys. foundation_model could be either "gpt-3.5-turbo" or "gpt-4"
factool_instance = Factool("gpt-4")
inputs = [
{
"prompt": "Introduce Graham Neubig",
"response": "Graham Neubig is a professor at MIT",
"category": "kbqa"
},
...
]
response_list = factool_instance.run(inputs)
print(response_list)
```
</details>
### Knowledge-based QA
<details>
<summary>Detailed usage of factool on knowledge-based QA (click to toggle the content)</summary>
```python
export OPENAI_API_KEY=...
export SERPER_API_KEY=...
```
```python
from factool import Factool
# Initialize a Factool instance with the specified keys. foundation_model could be either "gpt-3.5-turbo" or "gpt-4"
factool_instance = Factool("gpt-4")
inputs = [
{
"prompt": "Introduce Graham Neubig",
"response": "Graham Neubig is a professor at MIT",
"category": "kbqa"
},
]
response_list = factool_instance.run(inputs)
print(response_list)
```
The response_list should follow the following format:
```python
{
"average_claim_level_factuality": avg_claim_level_factuality
"average_response_level_factuality": avg_response_level_factuality
"detailed_information": [
{
'prompt': prompt_1,
'response': response_1,
'category': 'kbqa',
'claims': [claim_11, claim_12, ..., claims_1n],
'queries': [[query_111, query_112], [query_121, query_122], ..[query_1n1, query_1n2]],
'evidences': [[evidences_with_source_11], [evidences_with_source_12], ..., [evidences_with_source_1n]],
'claim_level_factuality': [{claim_11, reasoning_11, error_11, correction_11, factuality_11}, {claim_12, reasoning_12, error_12, correction_12, factuality_12}, ..., {claim_1n, reasoning_1n, error_1n, correction_1n, factuality_1n}],
'response_level_factuality': factuality_1
},
{
'prompt': prompt_2,
'response': response_2,
'category': 'kbqa',
'claims': [claim_21, claim_22, ..., claims_2n],
'queries': [[query_211, query_212], [query_221, query_222], ..., [query_2n1, query_2n2]],
'evidences': [[evidences_with_source_21], [evidences_with_source_22], ..., [evidences_with_source_2n]],
'claim_level_factuality': [{claim_21, reasoning_21, error_21, correction_21, factuality_21}, {claim_22, reasoning_22, error_22, correction_22, factuality_22}, ..., {claim_2n, reasoning_2n, error_2n, correction_2n, factuality_2n}],
'response_level_factuality': factuality_2,
},
...
]
}
```
In this case, you will get:
```python
{
'average_claim_level_factuality': 0.0,
'average_response_level_factuality': 0.0,
'detailed_information': [
{'prompt': 'Introduce Graham Neubig',
'response': 'Graham Neubig is a professor at MIT',
'category': 'kbqa', 'search_type': 'online',
'claims': [{'claim': 'Graham Neubig is a professor at MIT'}],
'queries': [['Graham Neubig current position', 'Is Graham Neubig a professor at MIT?']],
'evidences': [{'evidence': 'I am an Associate Professor of Computer Science at Carnegie Mellon University and CEO of Inspired Cognition. My research and development focuses on AI and ...', 'source': 'https://www.linkedin.com/in/graham-neubig-10b41616b'}, {'evidence': 'Missing: position | Show results with:position', 'source': 'https://www.linkedin.com/in/graham-neubig-10b41616b'}, {'evidence': 'My research is concerned with language and its role in human communication. In particular, my long-term research goal is to break down barriers in ...', 'source': 'https://miis.cs.cmu.edu/people/222215657/graham-neubig'}, {'evidence': 'My research focuses on handling human languages (like English or Japanese) with computers -- natural language processing. In particular, I am interested in ...', 'source': 'http://www.phontron.com/'}, {'evidence': 'Missing: current | Show results with:current', 'source': 'http://www.phontron.com/'}, {'evidence': 'Graham Neubig. I am an Associate Professor at the Carnegie Mellon University Language Technology Institute in the School of Computer Science, and work with ...', 'source': 'http://www.phontron.com/'}, {'evidence': 'Missing: MIT? | Show results with:MIT?', 'source': 'http://www.phontron.com/'}, {'evidence': 'Associate Professor, Language Technology Institute, Carnegie Mellon University Affiliated Faculty, Machine Learning Department, Carnegie Mellon University', 'source': 'https://www.phontron.com/research.php'}, {'evidence': 'Missing: MIT? | Show results with:MIT?', 'source': 'https://www.phontron.com/research.php'}, {'evidence': 'MIT Embodied Intelligence ... About the speaker: Graham ...', 'source': 'https://youtube.com/watch?v=CtcP5bvODzY'}],
'claim_level_factuality': [
{'reasoning': 'The given text is non-factual. The evidence provided clearly states that Graham Neubig is an Associate Professor of Computer Science at Carnegie Mellon University, not at MIT.',
'error': 'The error in the text is the incorrect affiliation of Graham Neubig. He is not a professor at MIT.',
'correction': 'Graham Neubig is a professor at Carnegie Mellon University.',
'factuality': False,
'claim': 'Graham Neubig is a professor at MIT'}
],
'response_level_factuality': False}
]
}
```
</details>
### Code
<details>
<summary>Detailed usage of factool on code (click to toggle the content)</summary>
```python
export OPENAI_API_KEY=...
```
```python
from factool import Factool
# Initialize a Factool instance with the specified keys. foundation_model could be either "gpt-3.5-turbo" or "gpt-4"
factool_instance = Factool("gpt-4")
inputs = [
{
"prompt": "def get_max_triples(n): \"\"\" You are given a positive integer n. You have to create an integer array a of length n. For each i (1 \u2264 i \u2264 n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). \"\"\" Now implement the function get_max_triples using Python",
"response": "def get_max_triples(n):\n a = [i * i - i + 1 for i in range(1, n+1)]\n count = 0\n for i in range(n-2):\n for j in range(i+1, n-1):\n for k in range(j+1, n):\n if (a[i] + a[j] + a[k]) % 3 == 0:\n count += 1\n return count\n\nprint(get_max_triples(5)) # Output: 1",
"category": "code",
"entry_point": "get_max_triples"
}
]
response_list = factool_instance.run(inputs)
print(response_list)
```
The response_list should follow the following format:
```python
response_list =
{
"average_claim_level_factuality": avg_claim_level_factuality,
"average_response_level_factuality": avg_response_level_factuality,
"detailed_information": [
{
'prompt': prompt_1,
'response': response_1,
'category': 'code',
'entry_point': entry_point_1,
'claim': claim_1,
'testcases_queries': [testcase_query_11, testcase_query_12, testcase_query_13],
'potential_solutions_queries': [potential_solution_query_11, potential_solution_query_12, potential_solution_query_13],
'exec_results': [[evidences_111, evidences_112, evidences_113, evidences_114], [evidences_121, evidences_122, evidences_123, evidences_124], [evidences_131, evidences_132, evidences_133, evidences_134]], # note that evidences_114, evidences_124, evidences_134 are the execution results of response_1 against testcase_query_11, testcase_query_12, and testcase_query_13, respectively.
'claim_level_factuality': factuality_1,
'response_level_factuality': factuality_1,
},
{
'prompt': prompt_2,
'response': response_2,
'category': 'code',
'entry_point': entry_point_2,
'claim': claim_2,
'testcases_queries': [testcase_query_21, testcase_query_22, testcase_query_23],
'potential_solutions_queries': [potential_solution_query_21, potential_solution_query_22, potential_solution_query_23],
'exec_results': [[evidences_211, evidences_212, evidences_213, evidences_214], [evidences_221, evidences_222, evidences_223, evidences_224], [evidences_231, evidences_232, evidences_233, evidences_234]], # note that evidences_214, evidences_224, evidences_234 are the execution results of response_1 against testcase_query_21, testcase_query_22, and testcase_query_23, respectively.
'claim_level_factuality': factuality_2,
'response_level_factuality': factuality_2,
},
]
...
}
```
In this case, you will get:
```python
{
"average_claim_level_factuality": 1.0,
"average_response_level_factuality": 1.0,
"detailed_information": [
{
'prompt': 'def get_max_triples(n): """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """ Now implement the function get_max_triples using Python',
'response': 'def get_max_triples(n):\n a = [i * i - i + 1 for i in range(1, n+1)]\n count = 0\n for i in range(n-2):\n for j in range(i+1, n-1):\n for k in range(j+1, n):\n if (a[i] + a[j] + a[k]) % 3 == 0:\n count += 1\n return count\n\nprint(get_max_triples(5)) # Output: 1',
'category': 'code',
'entry_point': 'get_max_triples',
'claim': 'def get_max_triples(n):\n a = [i * i - i + 1 for i in range(1, n+1)]\n count = 0\n for i in range(n-2):\n for j in range(i+1, n-1):\n for k in range(j+1, n):\n if (a[i] + a[j] + a[k]) % 3 == 0:\n count += 1\n return count\n\nprint(get_max_triples(5)) # Output: 1',
'testcases_queries': ['get_max_triples(5)', 'get_max_triples(10)', 'get_max_triples(3)'], 'potential_solutions_queries': ['def get_max_triples(n):\n a = [i * i - i + 1 for i in range(1, n+1)]\n count = 0\n for i in range(n-2):\n for j in range(i+1, n-1):\n for k in range(j+1, n):\n if (a[i] + a[j] + a[k]) % 3 == 0:\n count += 1\n return count', 'def get_max_triples(n):\n a = [i * i - i + 1 for i in range(1, n + 1)]\n count = 0\n for i in range(n):\n for j in range(i + 1, n):\n for k in range(j + 1, n):\n if (a[i] + a[j] + a[k]) % 3 == 0:\n count += 1\n return count', 'def get_max_triples(n):\n a = [i * i - i + 1 for i in range(1, n+1)]\n count = 0\n for i in range(n):\n for j in range(i+1, n):\n for k in range(j+1, n):\n if (a[i] + a[j] + a[k]) % 3 == 0:\n count += 1\n return count', 'def get_max_triples(n):\n a = [i * i - i + 1 for i in range(1, n+1)]\n count = 0\n for i in range(n-2):\n for j in range(i+1, n-1):\n for k in range(j+1, n):\n if (a[i] + a[j] + a[k]) % 3 == 0:\n count += 1\n return count\n\nprint(get_max_triples(5)) # Output: 1'],
'exec_results': [[1, 1, 1, 1], [36, 36, 36, 36], [0, 0, 0, 0]],
'claim_level_factuality': True,
'response_level_factuality': True
}
]
}
```
</details>
### Math
<details>
<summary>Detailed usage of factool on math (click to toggle the content)</summary>
```python
export OPENAI_API_KEY=...
```
```python
from factool import Factool
# Initialize a Factool instance with the specified keys. foundation_model could be either "gpt-3.5-turbo" or "gpt-4"
factool_instance = Factool("gpt-4")
inputs = [
{
"prompt": "Stephen placed an online order for groceries. His final bill came to $7023116. Because this was through a delivery vendor, they tacked on a 25% fee to his final total and charged him $3.00 in delivery fees. Stephen also added a $4.00 tip. After the extra fees, what was the final price of Stephen's groceries?",
"category": "math",
"response": "Okay, here are the steps to solve this:\n* Stephen's initial grocery bill was $7023116\n* The delivery vendor charged a 25% fee on top of that. 25% of $7023116 is 0.25 * $7023116 = $1755779\n* They also charged a flat $3 delivery fee\n* Stephen added a $4 tip\n* So the total charges were:\n * Initial groceries: $7023116\n * 25% fee: $1755779\n * Delivery fee: $3 \n * Tip: $4\n* Adding all that up, the total final price was $7023116 + $1755779 + $3 + $4 = $8779902\n\nSo the final price of Stephen's groceries was $8779902"
},
]
response_list = factool_instance.run(inputs)
print(response_list)
```
The response_list should follow the following format:
```python
{
"average_claim_level_factuality": avg_claim_level_factuality,
"average_response_level_factuality": avg_response_level_factuality,
"detailed_information": [
{
'prompt': prompt_1,
'response': response_1,
'category': 'math',
'claims': [claim_11, claim_12, ..., claims_1n],
'queries': [query_11, query_12, ..., query_1n],
'execution_results': [exec_result_11, exec_result_12, ..., exec_result_1n],
'claim_level_factuality': [factuality_11, factuality_12, ..., factuality_1n],
'response_level_factuality': factuality_1
},
{
'prompt': prompt_2,
'response': response_2,
'category': 'math',
'claims': [claim_21, claim_22, ..., claims_2n],
'queries': [query_21, query_22, ..., query_2n],
'execution_results': [exec_result_21, exec_result_22, ..., exec_result_2n],
'claim_level_factuality': [factuality_21, factuality_22, ..., factuality_2n],
'response_level_factuality': factuality_2
},
...
]
}
```
In this case, you will get:
```python
{
"average_claim_level_factuality": 0.5,
"average_response_level_factuality": 0.0,
"detailed_information": [
{
'prompt': "Stephen placed an online order for groceries. His final bill came to $7023116. Because this was through a delivery vendor, they tacked on a 25% fee to his final total and charged him $3.00 in delivery fees. Stephen also added a $4.00 tip. After the extra fees, what was the final price of Stephen's groceries?",
'category': 'math',
'response': "Okay, here are the steps to solve this:\n* Stephen's initial grocery bill was $7023116\n* The delivery vendor charged a 25% fee on top of that. 25% of $7023116 is 0.25 * $7023116 = $1755779\n* They also charged a flat $3 delivery fee\n* Stephen added a $4 tip\n* So the total charges were:\n * Initial groceries: $7023116\n * 25% fee: $1755779\n * Delivery fee: $3 \n * Tip: $4\n* Adding all that up, the total final price was $7023116 + $1755779 + $3 + $4 = $8779902\n\nSo the final price of Stephen's groceries was $8779902", 'claims': [{'math_calculation': '0.25 * 7023116', 'calculated_answer': '1755779'}, {'math_calculation': '7023116 + 1755779 + 3 + 4', 'calculated_answer': '8779902'}], 'queries': [{'python_snippet': 'print(0.25 * 7023116 == 1755779)'}, {'python_snippet': 'print(7023116 + 1755779 + 3 + 4 == 8779902)'}], 'execution_results': ['True', 'False'],
'claim_level_factuality': [True, False],
'response_level_factuality': False
}
]
}
```
</details>
### Scientific Literature Review
<details>
<summary>Detailed usage of factool on scientific literature review (click to toggle the content)</summary>
```python
export OPENAI_API_KEY=...
export SCRAPER_API_KEY=...
```
```python
from factool import Factool
# Initialize a Factool instance with the specified keys. foundation_model could be either "gpt-3.5-turbo" or "gpt-4"
factool_instance = Factool("gpt-4")
inputs = [
{
"prompt": "Detail how machine learning algorithms are applied in data"
" analytics and the processes involved in training"
" these algorithms. Please cite relevant research papers"
" or textbooks to support your points, including the author's"
" name, the title of the work, and the year of publication.",
"category": "scientific",
"response": "Machine learning algorithms play a crucial role in data"
" analytics. They are used to extract insights and knowledge"
" from large datasets, which can be used to make informed"
" decisions and predictions. The following are the processes"
" involved in training machine learning algorithms:\n\n1. "
"Data Preprocessing: The first step in training a machine"
" learning algorithm is to preprocess the data. This involves"
" cleaning the data, handling missing values, "
"encoding categorical variables, and scaling the data. "
"The aim of preprocessing is to ensure that the data is in"
" a format that can be used by the machine learning algorithm.\n2. Feature Selection: Once the data has been preprocessed, the next step is to select the relevant features that will be used to train the machine learning algorithm. This involves identifying the features that are most important for predicting the target variable. Feature selection can be done using various techniques, such as filter methods, wrapper methods, and embedded methods.\n3. Model Selection: After feature selection, the next step is to select the appropriate machine learning algorithm to use. There are various types of machine learning algorithms, such as supervised learning, unsupervised learning, and reinforcement learning. The choice of algorithm depends on the nature of the problem and the type of data available.\n4. Training the Model: Once the model has been selected, the next step is to train the machine learning algorithm using the preprocessed data. This involves using a training set of data to optimize the parameters of the model so that it can accurately predict the target variable.\n5. Model Evaluation: After the model has been trained, the next step is to evaluate its performance. This involves testing the model on a separate test set of data and measuring its accuracy, precision, recall, and other performance metrics.\n6. Model Deployment: Once the model has been evaluated and fine-tuned, it can be deployed in a production environment. This involves integrating the model into a larger system or workflow, and monitoring its performance over time.\n\nResearch papers and textbooks that support the above points include:\n\n* \"An Introduction to Machine Learning\" by Alpaydin, B., (2010) which provides a comprehensive overview of machine learning algorithms and their applications.\n* \"Data Mining: Concepts and Techniques\" by Han, J., Kamber, B., & Pei, J., (2011) which provides a detailed introduction to data mining and its applications.\n* \"Machine Learning: Trends, Perspectives, and Prospects\" by Kamber, B., & Pei, J., (2012) which provides an overview of the current trends and future prospects of machine learning.\n* \"Machine Learning for Data Mining\" by He, C., & Wang, Y., (2015) which provides an in-depth introduction to machine learning algorithms and their applications in data mining."
},
]
response_list = factool_instance.run(inputs)
print(response_list)
```
The response_list should follow the following format:
```python
{
"average_claim_level_factuality": avg_claim_level_factuality,
"average_response_level_factuality": avg_response_level_factuality,
"detailed_information": [
{
'prompt': prompt_1,
'response': response_1,
'category': 'scientific',
'claims': [claim_11, claim_12, ..., claims_1n],
'queries': [query_11, query_12, ..., query_1n],
'evidences': [evidences_11, evidences_12, ..., evidences_1n],
'claim_level_factuality': [{claim_11, evidence_11, error_11, factuality_11}, {claim_12, evidence_12, error_12, factuality_12}, ..., {claim_1n, evidence_1n, error_1n, factuality_1n}],
'response_level_factuality': factuality_1
},
{
'prompt': prompt_2,
'response': response_2,
'category': 'scientific',
'claims': [claim_21, claim_22, ..., claims_2n],
'queries': [query_21, query_22, ..., query_2n],
'evidences': [evidences_21, evidences_22, ..., evidences_2n],
'claim_level_factuality': [{claim_21, evidence_21, error_21, factuality_21}, {claim_22, evidence_22, error_22, factuality_22}, ..., {claim_2n, evidence_2n, error_2n, factuality_2n}],
'response_level_factuality': factuality_2
},
...
]
}
```
In this case, you will get:
```python
{
"average_claim_level_factuality": 0.0,
"average_response_level_factuality": 0.0,
"detailed_information": [
{
'prompt': "Detail how machine learning algorithms are applied in data analytics and the processes involved in training these algorithms. Please cite relevant research papers or textbooks to support your points, including the author's name, the title of the work, and the year of publication.", 'response': 'Machine learning algorithms play a crucial role in data analytics. They are used to extract insights and knowledge from large datasets, which can be used to make informed decisions and predictions. The following are the processes involved in training machine learning algorithms:\n\n1. Data Preprocessing: The first step in training a machine learning algorithm is to preprocess the data. This involves cleaning the data, handling missing values, encoding categorical variables, and scaling the data. The aim of preprocessing is to ensure that the data is in a format that can be used by the machine learning algorithm.\n2. Feature Selection: Once the data has been preprocessed, the next step is to select the relevant features that will be used to train the machine learning algorithm. This involves identifying the features that are most important for predicting the target variable. Feature selection can be done using various techniques, such as filter methods, wrapper methods, and embedded methods.\n3. Model Selection: After feature selection, the next step is to select the appropriate machine learning algorithm to use. There are various types of machine learning algorithms, such as supervised learning, unsupervised learning, and reinforcement learning. The choice of algorithm depends on the nature of the problem and the type of data available.\n4. Training the Model: Once the model has been selected, the next step is to train the machine learning algorithm using the preprocessed data. This involves using a training set of data to optimize the parameters of the model so that it can accurately predict the target variable.\n5. Model Evaluation: After the model has been trained, the next step is to evaluate its performance. This involves testing the model on a separate test set of data and measuring its accuracy, precision, recall, and other performance metrics.\n6. Model Deployment: Once the model has been evaluated and fine-tuned, it can be deployed in a production environment. This involves integrating the model into a larger system or workflow, and monitoring its performance over time.\n\nResearch papers and textbooks that support the above points include:\n\n* "An Introduction to Machine Learning" by Alpaydin, B., (2010) which provides a comprehensive overview of machine learning algorithms and their applications.\n* "Data Mining: Concepts and Techniques" by Han, J., Kamber, B., & Pei, J., (2011) which provides a detailed introduction to data mining and its applications.\n* "Machine Learning: Trends, Perspectives, and Prospects" by Kamber, B., & Pei, J., (2012) which provides an overview of the current trends and future prospects of machine learning.\n* "Machine Learning for Data Mining" by He, C., & Wang, Y., (2015) which provides an in-depth introduction to machine learning algorithms and their applications in data mining.',
'category': 'scientific',
'claims': [{'paper_title': 'An Introduction to Machine Learning', 'paper_author(s)': 'Alpaydin, B.', 'paper_pub_year': '2010'}, {'paper_title': 'Data Mining: Concepts and Techniques', 'paper_author(s)': 'Han, J., Kamber, B., & Pei, J.', 'paper_pub_year': '2011'}, {'paper_title': 'Machine Learning: Trends, Perspectives, and Prospects', 'paper_author(s)': 'Kamber, B., & Pei, J.', 'paper_pub_year': '2012'}, {'paper_title': 'Machine Learning for Data Mining', 'paper_author(s)': 'He, C., & Wang, Y.', 'paper_pub_year': '2015'}],
'queries': ['An Introduction to Machine Learning', 'Data Mining: Concepts and Techniques', 'Machine Learning: Trends, Perspectives, and Prospects', 'Machine Learning for Data Mining'],
'evidences': [{'title': 'Introduction to machine learning', 'author': ['Y Baştanlar', 'M Özuysal'], 'pub_year': '2014'}, {'title': 'Data mining: Data mining concepts and techniques', 'author': ['S Agarwal'], 'pub_year': '2013'}, {'title': 'Machine learning: Trends, perspectives, and prospects', 'author': ['MI Jordan', 'TM Mitchell'], 'pub_year': '2015'}, {'title': 'Machine learning and data mining', 'author': ['TM Mitchell'], 'pub_year': '1999'}],
'claim_level_factuality': [{'generated_paper_title': 'An Introduction to Machine Learning', 'generated_paper_author(s)': 'Alpaydin, B.', 'generated_paper_pub_year': '2010', 'actual_paper_title': 'Introduction to machine learning', 'actual_paper_author(s)': ['Y Baştanlar', 'M Özuysal'], 'actual_paper_pub_year': '2014', 'error': ['wrong_paper_author(s)', 'wrong_paper_pub_year'], 'factuality': False}, {'generated_paper_title': 'Data Mining: Concepts and Techniques', 'generated_paper_author(s)': 'Han, J., Kamber, B., & Pei, J.', 'generated_paper_pub_year': '2011', 'actual_paper_title': 'Data mining: Data mining concepts and techniques', 'actual_paper_author(s)': ['S Agarwal'], 'actual_paper_pub_year': '2013', 'error': ['wrong_paper_title', 'wrong_paper_author(s)', 'wrong_paper_pub_year'], 'factuality': False}, {'generated_paper_title': 'Machine Learning: Trends, Perspectives, and Prospects', 'generated_paper_author(s)': 'Kamber, B., & Pei, J.', 'generated_paper_pub_year': '2012', 'actual_paper_title': 'Machine learning: Trends, perspectives, and prospects', 'actual_paper_author(s)': ['MI Jordan', 'TM Mitchell'], 'actual_paper_pub_year': '2015', 'error': ['wrong_paper_author(s)', 'wrong_paper_pub_year'], 'factuality': False}, {'generated_paper_title': 'Machine Learning for Data Mining', 'generated_paper_author(s)': 'He, C., & Wang, Y.', 'generated_paper_pub_year': '2015', 'actual_paper_title': 'Machine learning and data mining', 'actual_paper_author(s)': ['TM Mitchell'], 'actual_paper_pub_year': '1999', 'error': ['wrong_paper_title', 'wrong_paper_author(s)', 'wrong_paper_pub_year'], 'factuality': False}],
'response_level_factuality': False
}
]
}
```
</details>
## ChatGPT Plugin with Factool
* export the API keys
* Install the package: [Installation](#installation)
* git clone the repo: `git clone https://github.com/GAIR-NLP/factool.git`
* `cd ./plugin_config`
* Run the API locally: `uvicorn main:app --host 0.0.0.0 --port ${PORT:-5003}`
* Enter plugin store of [ChatGPT Website](https://chat.openai.com/?model=gpt-4-plugins)
* Click 'develop your own plugin' then enter the website domain `localhost:5003` under 'domain'.
### Demo
<details>
<summary>Videos (click to toggle the content)</summary>
Knowledge-based QA:
![Alt Text](./figs/factool_plugin_kbqa2.gif)
![Alt Text](./figs/factool_plugin_kbqa3.gif)
Code:
![Alt Text](./figs/factool_plugin_code.gif)
Math:
![Alt Text](./figs/factool_plugin_math.gif)
Scientific Literature Review:
![Alt Text](./figs/factool_plugin_scientific.gif)
</details>
## Citation
Please cite our [paper](https://arxiv.org/abs/2307.13528) if you find the repository helpful.
```
@article{chern2023factool,
title={FacTool: Factuality Detection in Generative AI--A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios},
author={Chern, I-Chun and Chern, Steffi and Chen, Shiqi and Yuan, Weizhe and Feng, Kehua and Zhou, Chunting and He, Junxian and Neubig, Graham and Liu, Pengfei},
journal={arXiv preprint arXiv:2307.13528},
year={2023}
}
```
|