|
import json |
|
import yaml |
|
import os |
|
import time |
|
import math |
|
import pdb |
|
from typing import List, Dict |
|
|
|
from factool.knowledge_qa.tool import google_search |
|
from factool.knowledge_qa.tool import local_search |
|
from factool.utils.base.pipeline import pipeline |
|
|
|
class knowledge_qa_pipeline(pipeline): |
|
def __init__(self, foundation_model, snippet_cnt, search_type, data_link=None, Embed_link=None): |
|
super().__init__('knowledge_qa', foundation_model) |
|
if(search_type == 'online'): |
|
self.tool = google_search(snippet_cnt = snippet_cnt) |
|
elif(search_type == 'local'): |
|
self.tool = local_search(snippet_cnt = snippet_cnt, data_link=data_link, embedding_link=Embed_link) |
|
with open(os.path.join(self.prompts_path, "claim_extraction.yaml"), 'r') as file: |
|
data = yaml.load(file, Loader=yaml.FullLoader) |
|
self.claim_prompt = data['knowledge_qa'] |
|
|
|
with open(os.path.join(self.prompts_path, 'query_generation.yaml'), 'r') as file: |
|
data = yaml.load(file, Loader=yaml.FullLoader) |
|
self.query_prompt = data['knowledge_qa'] |
|
|
|
with open(os.path.join(self.prompts_path, 'agreement_verification.yaml'), 'r') as file: |
|
data = yaml.load(file, Loader=yaml.FullLoader) |
|
self.verification_prompt = data['knowledge_qa'] |
|
|
|
async def _claim_extraction(self, responses): |
|
messages_list = [ |
|
[ |
|
{"role": "system", "content": self.claim_prompt['system']}, |
|
{"role": "user", "content": self.claim_prompt['user'].format(input=response)}, |
|
] |
|
for response in responses |
|
] |
|
return await self.chat.async_run(messages_list, List) |
|
|
|
async def _query_generation(self, claims): |
|
if claims == None: |
|
return ['None'] |
|
messages_list = [ |
|
[ |
|
{"role": "system", "content": self.query_prompt['system']}, |
|
{"role": "user", "content": self.query_prompt['user'].format(input=claim['claim'] if 'claim' in claim else '')}, |
|
] |
|
for claim in claims |
|
] |
|
return await self.chat.async_run(messages_list, List) |
|
|
|
async def _verification(self, claims, evidences): |
|
messages_list = [ |
|
[ |
|
{"role": "system", "content": self.verification_prompt['system']}, |
|
{"role": "user", "content": self.verification_prompt['user'].format(claim=claim['claim'], evidence=str(evidence))}, |
|
] |
|
for claim, evidence in zip(claims, evidences) |
|
] |
|
return await self.chat.async_run(messages_list, Dict) |
|
|
|
async def run_with_tool_live(self, responses): |
|
claims_in_responses = await self._claim_extraction(responses) |
|
queries_in_responses = [] |
|
evidences_in_responses = [] |
|
sources_in_responses = [] |
|
verifications_in_responses = [] |
|
|
|
for claims_in_response in claims_in_responses: |
|
queries = await self._query_generation(claims_in_response) |
|
queries_in_responses.append(queries) |
|
search_outputs_for_claims = await self.tool.run(queries) |
|
evidences = [output["content"] for search_outputs_for_claim in search_outputs_for_claims for output in search_outputs_for_claim] |
|
evidences_in_responses.append(evidences) |
|
sources = [output["source"] for search_outputs_for_claim in search_outputs_for_claims for output in search_outputs_for_claim] |
|
sources_in_responses.append(sources) |
|
verifications = await self._verification(claims_in_response, evidences) |
|
verifications_in_responses.append(verifications) |
|
|
|
return claims_in_responses, queries_in_responses, evidences_in_responses, sources_in_responses, verifications_in_responses |
|
|
|
async def run_with_tool_live_without_claim_extraction(self, claims): |
|
queries = await self._query_generation(claims) |
|
evidences = await self.tool.run(queries) |
|
|
|
final_response = await self._verification(claims, evidences) |
|
for i in range(len(final_response)): |
|
if final_response[i] != None: |
|
final_response[i]['queries'] = queries[i] |
|
final_response[i]['evidences'] = evidences[i] |
|
|
|
return final_response |
|
|
|
async def run_with_tool_api_call(self, prompts, responses): |
|
batch_size = 5 |
|
num_batches = math.ceil(len(prompts) / batch_size) |
|
|
|
self.sample_list = [{"prompt": prompt, "response": response, "category": 'kbqa'} for prompt, response in zip(prompts, responses)] |
|
|
|
for i in range(num_batches): |
|
print(i) |
|
batch_start = i * batch_size |
|
batch_end = min((i + 1) * batch_size, len(responses)) |
|
|
|
claims_in_responses, queries_in_responses, evidences_in_responses, sources_in_responses, verifications_in_responses = await self.run_with_tool_live(responses[batch_start:batch_end]) |
|
|
|
for j, (claims_in_response, queries_in_response, evidences_in_response, sources_in_response, verifications_in_response) in enumerate(zip(claims_in_responses, queries_in_responses, evidences_in_responses, sources_in_responses, verifications_in_responses)): |
|
index = batch_start + j |
|
|
|
if claims_in_response != None: |
|
for k, claim in enumerate(claims_in_response): |
|
if verifications_in_response[k] != None: |
|
if claim != None: |
|
verifications_in_response[k].update({'claim': claim['claim']}) |
|
else: |
|
verifications_in_response[k].update({'claim': 'None'}) |
|
|
|
evidences_with_source = [] |
|
for evidence, source in zip(evidences_in_response, sources_in_response): |
|
evidences_with_source.append({'evidence': evidence, 'source': source}) |
|
self.sample_list[index].update({ |
|
'claims': claims_in_response, |
|
'queries': queries_in_response, |
|
|
|
|
|
'evidences': evidences_with_source, |
|
'claim_level_factuality': verifications_in_response, |
|
'response_level_factuality': all([verification['factuality'] if verification != None else True for verification in verifications_in_response]) |
|
}) |
|
|
|
return self.sample_list |
|
|
|
async def run_with_tool_dataset(self, annotated_dataset_path: str, with_tool_classified_dataset_path: str, rerun: bool = False, rerun_indices: list = []): |
|
data_path = with_tool_classified_dataset_path if rerun else annotated_dataset_path |
|
with open(data_path, 'r') as f: |
|
data = [json.loads(line) for line in f] |
|
self.sample_list = data if rerun else [claim for sample in data for claim in sample['claims']] |
|
rerun_elements = self.sample_list if not rerun else [self.sample_list[i] for i in rerun_indices] |
|
|
|
batch_size = 4 |
|
num_batches = math.ceil(len(rerun_elements) / batch_size) |
|
|
|
for i in range(num_batches): |
|
print(i) |
|
batch_start = i * batch_size |
|
batch_end = min((i + 1) * batch_size, len(rerun_elements)) |
|
|
|
responses = await self.run_with_tool_live_without_claim_extraction(rerun_elements[batch_start:batch_end]) |
|
|
|
for j, response in enumerate(responses): |
|
index = batch_start + j if rerun == False else rerun_indices[batch_start + j] |
|
if response is None: |
|
self.sample_list[index].update({ |
|
'with_tool_classification': 'None', |
|
'with_tool_reasoning': 'None', |
|
'queries': 'None', |
|
'evidences': 'None' |
|
}) |
|
else: |
|
self.sample_list[index].update({ |
|
'with_tool_classification': response.get('factuality', 'None'), |
|
'with_tool_reasoning': response.get('reasoning', 'None'), |
|
'queries': response.get('queries', 'None'), |
|
'evidences': response.get('evidences', 'None') |
|
}) |
|
|
|
|
|
with open(with_tool_classified_dataset_path, 'w') as f: |
|
for item in self.sample_list: |
|
json_str = json.dumps(item) |
|
f.write(json_str + '\n') |
|
|
|
async def run_self_check_live(self, fewshot, batch): |
|
user_prompt_key = 'user_3_shot_CoT' if fewshot else 'user_zero_shot_CoT' |
|
messages_list = [ |
|
[ |
|
{"role": "system", "content": self.self_check_prompt['system']}, |
|
{"role": "user", "content": self.self_check_prompt[user_prompt_key].format(claim=response['claim'])}, |
|
] |
|
for response in batch |
|
] |
|
return await self.chat.async_run(messages_list, Dict) |
|
|
|
async def run_self_check_dataset(self, annotated_dataset_path: str, self_check_classified_dataset_path: str, fewshot: bool = False, rerun: bool = False, rerun_indices: list = []): |
|
data_path = annotated_dataset_path if not rerun else self_check_classified_dataset_path |
|
with open(data_path, 'r') as f: |
|
data = [json.loads(line) for line in f] |
|
self.sample_list = data if rerun else [claim for sample in data for claim in sample['claims']] |
|
rerun_elements = self.sample_list if not rerun else [self.sample_list[i] for i in rerun_indices] |
|
|
|
batch_size = 10 |
|
num_batches = math.ceil(len(rerun_elements) / batch_size) |
|
|
|
for i in range(num_batches): |
|
print(i) |
|
batch_start = i * batch_size |
|
batch_end = min((i + 1) * batch_size, len(rerun_elements)) |
|
batch = rerun_elements[batch_start:batch_end] |
|
|
|
responses = await self.run_self_check_live(fewshot, batch) |
|
for j, response in enumerate(responses): |
|
index = batch_start + j if not rerun else rerun_indices[batch_start + j] |
|
if response is None: |
|
self.sample_list[index].update({ |
|
'self_check_classification': 'None', |
|
'self_check_reasoning': 'None' |
|
}) |
|
else: |
|
self.sample_list[index].update({ |
|
'self_check_classification': response.get('factuality', 'None'), |
|
'self_check_reasoning': response.get('reasoning', 'None') |
|
}) |
|
|
|
|
|
with open(self_check_classified_dataset_path, 'w') as f: |
|
for item in self.sample_list: |
|
json_str = json.dumps(item) |
|
f.write(json_str + '\n') |
|
|