chatdoctor / app.py
GGYIMAH1031's picture
uploaded all single files
a59ab81 verified
"""Streamlit page showing builder config."""
import streamlit as st
from st_utils import add_sidebar, get_current_state
from core.utils import get_image_and_text_nodes
from llama_index.schema import MetadataMode
from llama_index.chat_engine.types import AGENT_CHAT_RESPONSE_TYPE
from typing import Dict, Optional
import pandas as pd
####################
#### STREAMLIT #####
####################
st.set_page_config(
page_title="ChatDoctor: your virtual primary care physician assistant",
page_icon="🤖💬",
layout="centered",
#initial_sidebar_state="auto", #ggyimah set this to off
menu_items=None,
)
st.title("ChatDoctor: your virtual primary care physician assistant")
#st.info(
# "Welcome!!! My name is ChatDoctor and I am trained to provide medical diagnoses and advice.",
# icon="ℹ️",
#)
current_state = get_current_state()
add_sidebar()
if (
"agent_messages" not in st.session_state.keys()
): # Initialize the chat messages history
st.session_state.agent_messages = [
{"role": "assistant", "content": "I am trained to provide medical diagnoses and advice. How may I help you, today?"}
]
def display_sources(response: AGENT_CHAT_RESPONSE_TYPE) -> None:
image_nodes, text_nodes = get_image_and_text_nodes(response.source_nodes)
if len(image_nodes) > 0 or len(text_nodes) > 0:
with st.expander("Sources"):
# get image nodes
if len(image_nodes) > 0:
st.subheader("Images")
for image_node in image_nodes:
st.image(image_node.metadata["file_path"])
if len(text_nodes) > 0:
st.subheader("Text")
sources_df_list = []
for text_node in text_nodes:
sources_df_list.append(
{
"ID": text_node.id_,
"Text": text_node.node.get_content(
metadata_mode=MetadataMode.ALL
),
}
)
sources_df = pd.DataFrame(sources_df_list)
st.dataframe(sources_df)
def add_to_message_history(
role: str, content: str, extra: Optional[Dict] = None
) -> None:
message = {"role": role, "content": str(content), "extra": extra}
st.session_state.agent_messages.append(message) # Add response to message history
def display_messages() -> None:
"""Display messages."""
for message in st.session_state.agent_messages: # Display the prior chat messages
with st.chat_message(message["role"]):
msg_type = message["msg_type"] if "msg_type" in message.keys() else "text"
if msg_type == "text":
st.write(message["content"])
elif msg_type == "info":
st.info(message["content"], icon="ℹ️")
else:
raise ValueError(f"Unknown message type: {msg_type}")
# display sources
if "extra" in message and isinstance(message["extra"], dict):
if "response" in message["extra"].keys():
display_sources(message["extra"]["response"])
# if agent is created, then we can chat with it
if current_state.cache is not None and current_state.cache.agent is not None:
st.info(f"Viewing config for agent: {current_state.cache.agent_id}", icon="ℹ️")
agent = current_state.cache.agent
# display prior messages
display_messages()
# don't process selected for now
if prompt := st.chat_input(
"Your question"
): # Prompt for user input and save to chat history
add_to_message_history("user", prompt)
with st.chat_message("user"):
st.write(prompt)
# If last message is not from assistant, generate a new response
if st.session_state.agent_messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = agent.chat(str(prompt))
st.write(str(response))
# display sources
# Multi-modal: check if image nodes are present
display_sources(response)
add_to_message_history(
"assistant", str(response), extra={"response": response}
)
else:
st.info("In the side bar,Select the ChatDoctor virtual agent (Agent_950acb55-056f-4324-957d-15e1c9b48695) to get started.")