File size: 12,025 Bytes
91f38ae db65cd7 87f10eb 91f38ae 9a8eaaf 91f38ae b805749 91f38ae 0193c81 9a8eaaf 0193c81 91f38ae 3489bcc 91f38ae 3489bcc 9a8eaaf 533a3db 9203fec db65cd7 0dde0c7 040e14b db65cd7 0193c81 9203fec 91f38ae b805749 533a3db b805749 533a3db b805749 533a3db 87f10eb 533a3db b805749 533a3db 9a8eaaf b805749 533a3db b805749 533a3db b805749 9a8eaaf b805749 533a3db b805749 9a8eaaf 87f10eb 75d8a9c 264365c b805749 9a8eaaf b805749 75d8a9c b805749 533a3db b805749 bc992a7 87f10eb bc992a7 9a8eaaf bc992a7 9a8eaaf bc992a7 9a8eaaf 75d8a9c bc992a7 9a8eaaf 75d8a9c bc992a7 87f10eb bc992a7 9a8eaaf bc992a7 9a8eaaf bc992a7 9a8eaaf 75d8a9c bc992a7 9a8eaaf bc992a7 75d8a9c bc992a7 b805749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
import logging
logger = logging.getLogger(__name__)
from io import BytesIO
import xlsxwriter
import plotly.express as px
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
is_list_like)
def targets():
if 'key1' in st.session_state:
df = st.session_state['key1'].copy()
idx = df['NetzeroLabel_Score'].idxmax()
netzero_placeholder = df.loc[idx, 'text']
df = df.drop(df.filter(regex='Score').columns, axis=1)
df = df[df.TargetLabel==True].reset_index(drop=True)
df['keep'] = True
df.drop(columns = ['ActionLabel','PolicyLabel','PlansLabel'], inplace=True)
cols = list(df.columns)
sector_cols = list(set(cols) - {'TargetLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'})
sector_cols.sort()
df['Sector'] = df.apply(lambda x: [col for col in sector_cols if x[col] == True],axis=1)
df['Sub-Target'] = df.apply(lambda x: [col for col in ['GHGLabel','NetzeroLabel','NonGHGLabel'] if x[col] == True ],axis=1)
st.session_state['target_hits'] = df
st.session_state['netzero'] = netzero_placeholder
def target_display():
if 'key1' in st.session_state:
hits = st.session_state['target_hits']
if len(hits) !=0:
# collecting some statistics
count_target = sum(hits['TargetLabel'] == True)
count_ghg = sum(hits['GHGLabel'] == True)
count_netzero = sum(hits['NetzeroLabel'] == True)
count_nonghg = sum(hits['NonGHGLabel'] == True)
count_mitigation = sum(hits['MitigationLabel'] == True)
count_adaptation = sum(hits['AdaptationLabel'] == True)
st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Target Related Paragraphs Statistics </h4>", unsafe_allow_html=True)
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(st.session_state['key0'])))
c1, c2 = st.columns([1,1])
with c1:
st.write('**Target Related Paragraphs**: `{}`'.format(count_target))
st.write('**Netzero Related Paragraphs**: `{}`'.format(count_netzero))
st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation))
with c2:
st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg))
st.write('**NonGHG Target Related Paragraphs**: `{}`'.format(count_nonghg))
st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation))
#st.write('----------------')
st.session_state['target_hits'] = hits[['keep','text','Sector','Sub-Target','page','MitigationLabel','AdaptationLabel']]
placeholder= []
for col in sector_cols:
placeholder.append({'Sector':col,'Count':sum(hits[col] == True)})
hits['Sector']
sector_df = pd.DataFrame.from_dict(placeholder)
fig = px.bar(sector_df, x='Sector', y='Count')
st.plotly_chart(fig,use_container_width= True)
st.write('---------------------------')
st.write('Explore the data')
#st.dataframe(hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector','Sub-Target',]])
else:
st.info("🤔 No Targets Found")
def actions():
if 'key1' in st.session_state:
df = st.session_state['key1'].copy()
df = df.drop(df.filter(regex='Score').columns, axis=1)
df = df[df.ActionLabel==True].reset_index(drop=True)
df['keep'] = True
df.drop(columns = ['TargetLabel','PolicyLabel','PlansLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True)
cols = list(df.columns)
sector_cols = list(set(cols) - {'ActionLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'})
sector_cols.sort()
df['Sector'] = df.apply(lambda x: [col for col in sector_cols if x[col] == True],axis=1)
st.session_state['action_hits'] = df
def action_display():
if 'key1' in st.session_state:
hits = st.session_state['action_hits']
if len(hits) !=0:
# collecting some statistics
count_action = sum(hits['ActionLabel'] == True)
count_mitigation = sum(hits['MitigationLabel'] == True)
count_adaptation = sum(hits['AdaptationLabel'] == True)
st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Action Related Paragraphs Statistics </h4>", unsafe_allow_html=True)
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(st.session_state['key0'])))
c1, c2 = st.columns([1,1])
with c1:
st.write('**Action Related Paragraphs**: `{}`'.format(count_action))
st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation))
with c2:
st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation))
#st.write('----------------')
#st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Action Related Paragraphs Count </h4>", unsafe_allow_html=True)
st.session_state['action_hits'] = hits[['text','page','keep','Sector','MitigationLabel','AdaptationLabel',]]
#hits['Sub-Target'] = hits.apply(lambda x: [col for col in ['GHGLabel','NetzeroLabel','NonGHGLabel'] if x[col] == True ],axis=1)
placeholder= []
for col in sector_cols:
placeholder.append({'Sector':col,'Count':sum(hits[col] == True)})
sector_df = pd.DataFrame.from_dict(placeholder)
fig = px.bar(sector_df, x='Sector', y='Count')
st.plotly_chart(fig,use_container_width= True)
st.write('------------------------')
st.write('Explore the data')
#st.dataframe(hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']])
else:
st.info("🤔 No Actions Found")
def policy():
if 'key1' in st.session_state:
df = st.session_state['key1'].copy()
df = df.drop(df.filter(regex='Score').columns, axis=1)
df = df[df.PolicyLabel==True].reset_index(drop=True)
df['keep'] = True
df.drop(columns = ['TargetLabel','ActionLabel','PlansLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True)
cols = list(df.columns)
sector_cols = list(set(cols) - {'PolicyLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'})
sector_cols.sort()
df['Sector'] = df.apply(lambda x: [col for col in sector_cols if x[col] == True],axis=1)
st.session_state['policy_hits'] = df
def policy_display():
if 'key1' in st.session_state:
hits = st.session_state['policy_hits']
if len(hits) !=0:
# collecting some statistics
count_action = sum(hits['PolicyLabel'] == True)
count_mitigation = sum(hits['MitigationLabel'] == True)
count_adaptation = sum(hits['AdaptationLabel'] == True)
st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Policy Related Paragraphs Statistics </h4>", unsafe_allow_html=True)
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(st.session_state['key0'])))
c1, c2 = st.columns([1,1])
with c1:
st.write('**Policy Related Paragraphs**: `{}`'.format(count_action))
st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation))
with c2:
st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation))
#st.write('----------------')
st.session_state['policy_hits'] = hits[['text','page','keep','Sector','MitigationLabel','AdaptationLabel']]
placeholder= []
for col in sector_cols:
placeholder.append({'Sector':col,'Count':sum(hits[col] == True)})
sector_df = pd.DataFrame.from_dict(placeholder)
fig = px.bar(sector_df, x='Sector', y='Count')
st.plotly_chart(fig,use_container_width= True)
st.write('-------------------')
st.write('Explore the data')
#st.dataframe(hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']])
else:
st.info("🤔 No Policy Found")
def plans():
if 'key1' in st.session_state:
df = st.session_state['key1'].copy()
df = df.drop(df.filter(regex='Score').columns, axis=1)
df = df[df.PlansLabel==True].reset_index(drop=True)
df['keep'] = True
df.drop(columns = ['TargetLabel','PolicyLabel','ActionLabel','GHGLabel','NetzeroLabel','NonGHGLabel'], inplace=True)
cols = list(df.columns)
sector_cols = list(set(cols) - {'PlansLabel','MitigationLabel','AdaptationLabel','GHGLabel','NetzeroLabel','NonGHGLabel','text','keep','page'})
sector_cols.sort()
df['Sector'] = df.apply(lambda x: [col for col in sector_cols if x[col] == True],axis=1)
st.session_state['plan_hits'] = df
def plans_display():
if 'key1' in st.session_state:
hits = st.session_state['plan_hits']
if len(hits) !=0:
# collecting some statistics
count_action = sum(hits['PlansLabel'] == True)
count_mitigation = sum(hits['MitigationLabel'] == True)
count_adaptation = sum(hits['AdaptationLabel'] == True)
st.markdown("<h4 style='text-align: left; color: black;'> Sectoral Plans Related Paragraphs Statistics </h4>", unsafe_allow_html=True)
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
.format(os.path.basename(st.session_state['filename']),
len(st.session_state['key0'])))
c1, c2 = st.columns([1,1])
with c1:
st.write('**Plans Related Paragraphs**: `{}`'.format(count_action))
st.write('**Mitigation Related Paragraphs**: `{}`'.format(count_mitigation))
with c2:
st.write('**Adaptation Related Paragraphs**: `{}`'.format(count_adaptation))
#st.write('----------------')
st.session_state['plan_hits'] = hits[['text','page','keep','Sector','MitigationLabel','AdaptationLabel']]
placeholder= []
for col in sector_cols:
placeholder.append({'Sector':col,'Count':sum(hits[col] == True)})
sector_df = pd.DataFrame.from_dict(placeholder)
fig = px.bar(sector_df, x='Sector', y='Count')
st.plotly_chart(fig,use_container_width= True)
st.write('---------------')
st.write('Explore the data')
#st.dataframe(hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']])
else:
st.info("🤔 No Plans Found")
|