File size: 5,069 Bytes
031e5e2
f415539
 
 
 
 
 
 
 
6d96e89
1e46fba
d49cd78
f415539
 
 
 
 
 
1e46fba
f415539
 
031e5e2
 
6d737a4
 
f415539
6d737a4
 
 
 
 
f415539
 
 
031e5e2
6d737a4
f415539
6d737a4
031e5e2
bc82aca
 
 
f415539
bc82aca
 
 
 
ad01b2c
 
 
 
 
 
 
 
 
 
 
 
f415539
ad01b2c
 
f415539
 
ad01b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f415539
 
 
ad01b2c
 
 
 
f415539
 
 
 
 
ad01b2c
1e46fba
 
 
d49cd78
 
1e46fba
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
import json
import os
# shifted from below - this must be the first streamlit call; otherwise: problems
st.set_page_config(page_title = 'Climate Policy Analysis Assistant', 
                   initial_sidebar_state='expanded', layout="wide")

import logging
logging.getLogger().setLevel(logging.INFO)
from utils.uploadAndExample import add_upload
import appStore.doc_processing as processing
import appStore.target as tapp_extraction






from PIL import Image
import pkg_resources
installed_packages = pkg_resources.working_set


with st.sidebar:
    # upload and example doc
    
    choice = st.sidebar.radio(label = 'Select the Document',
                            help = 'You can upload the document \
                            or else you can try a example document', 
                            options = ('Upload Document', 'Try Example'), 
                            horizontal = True)
    with(open('docStore/sample/files.json','r')) as json_file:
            files = json.load(json_file)
    add_upload(choice, files) 

with st.container():
        st.markdown("<h2 style='text-align: center; color: black;'> Climate Policy Analysis Assistant: CPo_droid </h2>", unsafe_allow_html=True)
        st.write(' ')

with st.expander("ℹ️ - About this app", expanded=False):
    st.write(
        """
        CPo_droid is an open-source\
        digital tool which aims to assist policy analysts and \
        other users in extracting and filtering relevant \
        information from public documents.
        """)
    st.write('**Definitions**')

    st.caption("""
            - **Target**: Targets are an intention to achieve a specific result, \
            for example, to reduce GHG emissions to a specific level \
            (a GHG target) or increase energy efficiency or renewable \
            energy to a specific level (a non-GHG target), typically by \ 
            a certain date.
            - **Economy-wide Target**: Certain Target are applicable \
                not at specific Sector level but are applicable at economic \
                wide scale.
            - **Netzero**: Identifies if its Netzero Target or not.
                - 'NET-ZERO target_labels' = ['T_Netzero','T_Netzero_C']
            - **GHG Target**: GHG targets refer to contributions framed as targeted \
                              outcomes in GHG terms.
                - 'GHG': ['T_Transport_Unc','T_Transport_C','T_Economy_C','T_Economy_Unc','T_Energy_C','T_Energy_Unc']
                - 'NON GHG TARGET': ['T_Adaptation_Unc','T_Adaptation_C', 'T_Transport_O_Unc', 'T_Transport_O_C']
            - **Conditionality**: An “unconditional contribution” is what countries \
             could implement without any conditions and based on their own \
             resources and capabilities. A “conditional contribution” is one \
             that countries would undertake if international means of support \
             are provided, or other conditions are met.
            - **Action**: Actions are an intention to implement specific means of \
             achieving GHG reductions, usually in forms of concrete projects.
            - **Policies and Plans**: Policies are domestic planning documents \
              such as policies, regulations or guidlines, and Plans  are broader \
             than specific policies or actions, such as a general intention \ 
             to ‘improve efficiency’, ‘develop renewable energy’, etc. \
            The terms come from the World Bank's NDC platform and WRI's publication.
              """)
    c1, c2, c3 =  st.columns([12,1,10])
    with c1:
        image = Image.open('docStore/img/flow.jpg') 
        st.image(image)
    with c3:
        st.write("""
            What Happens in background?
            
            
    
            - Step 1: Once the document is provided to app, it undergoes *Pre-processing*.\
            In this step the document is broken into smaller paragraphs \
            (based on word/sentence count).
            - Step 2: The paragraphs are fed to **TAPP(Target/Action/Policy/Plan multilabel) Classifier** which detects if
            the paragraph contains any *TAPP* related information or not.
            - Step 3: The paragraphs which are detected containing some TAPP \
            related information are then fed to multiple classifier to enrich the 
            Information Extraction.
    
            """)
        
        list_ = ""
        for package in installed_packages:
            list_ = list_ + f"{package.key}=={package.version}\n"
        st.download_button('Download Requirements', list_, file_name='requirements.txt')
                  
    st.write("")

# apps to be run
apps = [processing.app, tapp_extraction.app]
#, sector.app, adapmit.app, 
#        conditional.app, subtarget.app, category.app]

multiplier_val =1/len(apps)
if st.button("Analyze Document"):
    prg = st.progress(0.0)
    for i,func in enumerate(apps):
        func()
        prg.progress((i+1)*multiplier_val)
    prg.empty()