File size: 5,293 Bytes
301af0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfa165f
301af0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# set path
import glob, os, sys; 
sys.path.append('../utils')

#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from io import BytesIO
import xlsxwriter
import plotly.express as px
from pandas.api.types import (
    is_categorical_dtype,
    is_datetime64_any_dtype,
    is_numeric_dtype,
    is_object_dtype,
    is_list_like)


def to_excel():
    if 'key1' in st.session_state:
        df = st.session_state['key1']
        len_df = len(df)
        output = BytesIO()
        writer = pd.ExcelWriter(output, engine='xlsxwriter')
        df.to_excel(writer, index=False, sheet_name='rawdata')
    def build_sheet(df,name):
        df = df[df.keep == True]
        df = df.reset_index(drop=True)
        df.drop(columns = ['keep'], inplace=True)
        df.to_excel(writer,index=False,sheet_name = name)
        
        
    if 'target_hits' in st.session_state:
        target_hits = st.session_state['target_hits']
        build_sheet(target_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector','Sub-Target']],'Target')
    if 'action_hits' in st.session_state:
        action_hits = st.session_state['action_hits']
        build_sheet(action_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Actions')
    if 'policy_hits' in st.session_state:
        policy_hits = st.session_state['policy_hits']
        build_sheet(policy_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Policy')
    if 'plan_hits' in st.session_state:
        plan_hits = st.session_state['plan_hits']
        build_sheet(plan_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Plans')
        
    workbook = writer.book                                                                                                        
    writer.close()
    processed_data = output.getvalue()
    return processed_data


def filter_dataframe(key, cols):
    """
    Adds a UI on top of a dataframe to let viewers filter columns
    Args:
        key: key to look for in session_state
        cols: columns to use for filter in that order
    Returns:
        None
    """
    modify = st.checkbox("Add filters")

    if not modify:
        return 
    if key not in st.session_state:
        return
    else:
        df = st.session_state[key]
        df = df[cols + list(set(df.columns) - set(cols))]
    if len(df)==0:
        return

    modification_container = st.container()

    with modification_container:
        temp = list(set(cols) -{'page','keep'})
        to_filter_columns = st.multiselect("Filter dataframe on", temp)
        for column in to_filter_columns:
            left, right = st.columns((1, 20))
            left.write("↳")
            # Treat columns with < 10 unique values as categorical
            if is_categorical_dtype(df[column]):
                # st.write(type(df[column][0]), column)
                user_cat_input = right.multiselect(
                    f"Values for {column}",
                    df[column].unique(),
                    default=list(df[column].unique()),
                )
                df = df[df[column].isin(user_cat_input)]
            elif is_numeric_dtype(df[column]):
                _min = float(df[column].min())
                _max = float(df[column].max())
                step = (_max - _min) / 100
                user_num_input = right.slider(
                    f"Values for {column}",
                    _min,
                    _max,
                    (_min, _max),
                    step=step,
                )
                df = df[df[column].between(*user_num_input)]
            elif is_list_like(df[column]) & (type(df[column][0]) == list) :
                list_vals = set(x for lst in df[column].tolist() for x in lst)
                user_multi_input = right.multiselect(
                    f"Values for {column}",
                    list_vals,
                    default=list_vals,
                )   
                df['check'] = df[column].apply(lambda x: any(i in x for i in user_multi_input))
                df = df[df.check == True]
                df.drop(columns = ['check'],inplace=True)
            else:
                user_text_input = right.text_input(
                    f"Substring or regex in {column}",
                )
                if user_text_input:
                    df = df[df[column].str.lower().str.contains(user_text_input)]
            
            df = df.reset_index(drop=True)
        df = st.data_editor(
                  df,
                  column_config={
                      "keep": st.column_config.CheckboxColumn(
                          help="Select which rows to keep",
                          default=False,
                      )
                  },
                  disabled=list(set(df.columns) - {'keep'}),
                  hide_index=True,
                  key = 'editor'+key,
                    )
    

        #("updating target hits....")
        # st.write(len(df[df.keep == True]))
        st.session_state[key] = df
        
    return