File size: 5,299 Bytes
301af0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# set path
import glob, os, sys;
sys.path.append('../utils')
#import needed libraries
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import streamlit as st
from st_aggrid import AgGrid
import logging
logger = logging.getLogger(__name__)
from utils.config import get_classifier_params
from io import BytesIO
import xlsxwriter
import plotly.express as px
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
is_list_like)
def to_excel():
if 'key1' in st.session_state:
df = st.session_state['key1']
len_df = len(df)
output = BytesIO()
writer = pd.ExcelWriter(output, engine='xlsxwriter')
df.to_excel(writer, index=False, sheet_name='rawdata')
def build_sheet(df,name):
df = df[df.keep == True]
df = df.reset_index(drop=True)
df.drop(columns = ['keep'], inplace=True)
df.to_excel(writer,index=False,sheet_name = name)
if 'target_hits' in st.session_state:
target_hits = st.session_state['target_hits']
build_sheet(target_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector','Sub-Target']],'Target')
if 'action_hits' in st.session_state:
action_hits = st.session_state['action_hits']
build_sheet(action_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Actions')
if 'policy_hits' in st.session_state:
policy_hits = st.session_state['policy_hits']
build_sheet(policy_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Policy')
if 'plan_hits' in st.session_state:
plan_hits = st.session_state['plan_hits']
build_sheet(adaptation_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Plans')
workbook = writer.book
writer.close()
processed_data = output.getvalue()
return processed_data
def filter_dataframe(key, cols):
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
key: key to look for in session_state
cols: columns to use for filter in that order
Returns:
None
"""
modify = st.checkbox("Add filters")
if not modify:
return
if key not in st.session_state:
return
else:
df = st.session_state[key]
df = df[cols + list(set(df.columns) - set(cols))]
if len(df)==0:
return
modification_container = st.container()
with modification_container:
temp = list(set(cols) -{'page','keep'})
to_filter_columns = st.multiselect("Filter dataframe on", temp)
for column in to_filter_columns:
left, right = st.columns((1, 20))
left.write("↳")
# Treat columns with < 10 unique values as categorical
if is_categorical_dtype(df[column]):
# st.write(type(df[column][0]), column)
user_cat_input = right.multiselect(
f"Values for {column}",
df[column].unique(),
default=list(df[column].unique()),
)
df = df[df[column].isin(user_cat_input)]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
_min,
_max,
(_min, _max),
step=step,
)
df = df[df[column].between(*user_num_input)]
elif is_list_like(df[column]) & (type(df[column][0]) == list) :
list_vals = set(x for lst in df[column].tolist() for x in lst)
user_multi_input = right.multiselect(
f"Values for {column}",
list_vals,
default=list_vals,
)
df['check'] = df[column].apply(lambda x: any(i in x for i in user_multi_input))
df = df[df.check == True]
df.drop(columns = ['check'],inplace=True)
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df = df[df[column].str.lower().str.contains(user_text_input)]
df = df.reset_index(drop=True)
df = st.data_editor(
df,
column_config={
"keep": st.column_config.CheckboxColumn(
help="Select which rows to keep",
default=False,
)
},
disabled=list(set(df.columns) - {'keep'}),
hide_index=True,
key = 'editor'+key,
)
#("updating target hits....")
# st.write(len(df[df.keep == True]))
st.session_state[key] = df
return |