Update appStore/adapmit.py
Browse files- appStore/adapmit.py +38 -174
appStore/adapmit.py
CHANGED
@@ -1,174 +1,38 @@
|
|
1 |
-
# set path
|
2 |
-
import glob, os, sys
|
3 |
-
sys.path.append('../utils')
|
4 |
-
|
5 |
-
#import needed libraries
|
6 |
-
import seaborn as sns
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
import numpy as np
|
9 |
-
import pandas as pd
|
10 |
-
import streamlit as st
|
11 |
-
from utils.adapmit_classifier import load_adapmitClassifier,adapmit_classification
|
12 |
-
# from utils.keyword_extraction import textrank
|
13 |
-
import logging
|
14 |
-
logger = logging.getLogger(__name__)
|
15 |
-
from utils.config import get_classifier_params
|
16 |
-
from utils.preprocessing import paraLengthCheck
|
17 |
-
from io import BytesIO
|
18 |
-
import xlsxwriter
|
19 |
-
import plotly.express as px
|
20 |
-
|
21 |
-
# Declare all the necessary variables
|
22 |
-
classifier_identifier = 'adapmit'
|
23 |
-
params = get_classifier_params(classifier_identifier)
|
24 |
-
|
25 |
-
|
26 |
-
def
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
worksheet.data_validation('G2:G{}'.format(len_df),
|
40 |
-
{'validate': 'list',
|
41 |
-
'source': ['No', 'Yes', 'Discard']})
|
42 |
-
writer.save()
|
43 |
-
processed_data = output.getvalue()
|
44 |
-
return processed_data
|
45 |
-
|
46 |
-
def app():
|
47 |
-
|
48 |
-
### Main app code ###
|
49 |
-
with st.container():
|
50 |
-
|
51 |
-
if 'key1' in st.session_state:
|
52 |
-
df = st.session_state.key1
|
53 |
-
|
54 |
-
classifier = load_adapmitClassifier(classifier_name=params['model_name'])
|
55 |
-
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
56 |
-
if sum(df['Target Label'] == 'TARGET') > 100:
|
57 |
-
warning_msg = ": This might take sometime, please sit back and relax."
|
58 |
-
else:
|
59 |
-
warning_msg = ""
|
60 |
-
|
61 |
-
df = adapmit_classification(haystack_doc=df,
|
62 |
-
threshold= params['threshold'])
|
63 |
-
|
64 |
-
st.session_state.key1 = df
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# threshold= params['threshold']
|
71 |
-
# truth_df = df.drop(['text'],axis=1)
|
72 |
-
# truth_df = truth_df.astype(float) >= threshold
|
73 |
-
# truth_df = truth_df.astype(str)
|
74 |
-
# categories = list(truth_df.columns)
|
75 |
-
|
76 |
-
# placeholder = {}
|
77 |
-
# for val in categories:
|
78 |
-
# placeholder[val] = dict(truth_df[val].value_counts())
|
79 |
-
# count_df = pd.DataFrame.from_dict(placeholder)
|
80 |
-
# count_df = count_df.T
|
81 |
-
# count_df = count_df.reset_index()
|
82 |
-
# # st.write(count_df)
|
83 |
-
# placeholder = []
|
84 |
-
# for i in range(len(count_df)):
|
85 |
-
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'Yes'])
|
86 |
-
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'No'])
|
87 |
-
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
|
88 |
-
# # st.write("Total Paragraphs: {}".format(len(df)))
|
89 |
-
# fig = px.bar(count_df, y='category', x='count',
|
90 |
-
# color='truth_value',orientation='h', height =200)
|
91 |
-
# c1, c2 = st.columns([1,1])
|
92 |
-
# with c1:
|
93 |
-
# st.plotly_chart(fig,use_container_width= True)
|
94 |
-
|
95 |
-
# truth_df['labels'] = truth_df.apply(lambda x: {i if x[i]=='True' else None for i in categories}, axis=1)
|
96 |
-
# truth_df['labels'] = truth_df.apply(lambda x: list(x['labels'] -{None}),axis=1)
|
97 |
-
# # st.write(truth_df)
|
98 |
-
# df = pd.concat([df,truth_df['labels']],axis=1)
|
99 |
-
# st.markdown("###### Top few 'Mitigation' related paragraph/text ######")
|
100 |
-
# df = df.sort_values(by = ['Mitigation'], ascending=False)
|
101 |
-
# for i in range(3):
|
102 |
-
# if df.iloc[i]['Mitigation'] >= 0.50:
|
103 |
-
# st.write('**Result {}** (Relevancy Score: {:.2f})'.format(i+1,df.iloc[i]['Mitigation']))
|
104 |
-
# st.write("\t Text: \t{}".format(df.iloc[i]['text'].replace("\n", " ")))
|
105 |
-
|
106 |
-
# st.markdown("###### Top few 'Adaptation' related paragraph/text ######")
|
107 |
-
# df = df.sort_values(by = ['Adaptation'], ascending=False)
|
108 |
-
# for i in range(3):
|
109 |
-
# if df.iloc[i]['Adaptation'] > 0.5:
|
110 |
-
# st.write('**Result {}** (Relevancy Score: {:.2f})'.format(i+1,df.iloc[i]['Adaptation']))
|
111 |
-
# st.write("\t Text: \t{}".format(df.iloc[i]['text'].replace("\n", " ")))
|
112 |
-
# # st.write(df[['text','labels']])
|
113 |
-
# df['Validation'] = 'No'
|
114 |
-
# df['Val-Mitigation'] = 'No'
|
115 |
-
# df['Val-Adaptation'] = 'No'
|
116 |
-
# df_xlsx = to_excel(df)
|
117 |
-
# st.download_button(label='📥 Download Current Result',
|
118 |
-
# data=df_xlsx ,
|
119 |
-
# file_name= 'file_adaptation-mitigation.xlsx')
|
120 |
-
# # st.session_state.key4 =
|
121 |
-
|
122 |
-
# # category =set(df.columns)
|
123 |
-
# # removecols = {'Validation','Val-Adaptation','Val-Mitigation','text'}
|
124 |
-
# # category = list(category - removecols)
|
125 |
-
|
126 |
-
# else:
|
127 |
-
# st.info("🤔 No document found, please try to upload it at the sidebar!")
|
128 |
-
# logging.warning("Terminated as no document provided")
|
129 |
-
|
130 |
-
# # Creating truth value dataframe
|
131 |
-
# if 'key4' in st.session_state:
|
132 |
-
# if st.session_state.key4 is not None:
|
133 |
-
# df = st.session_state.key4
|
134 |
-
# st.markdown("###### Select the threshold for classifier ######")
|
135 |
-
# c4, c5 = st.columns([1,1])
|
136 |
-
|
137 |
-
# with c4:
|
138 |
-
# threshold = st.slider("Threshold", min_value=0.00, max_value=1.0,
|
139 |
-
# step=0.01, value=0.5,
|
140 |
-
# help = "Keep High Value if want refined result, low if dont want to miss anything" )
|
141 |
-
# category =set(df.columns)
|
142 |
-
# removecols = {'Validation','Val-Adaptation','Val-Mitigation','text'}
|
143 |
-
# category = list(category - removecols)
|
144 |
-
|
145 |
-
# placeholder = {}
|
146 |
-
# for val in category:
|
147 |
-
# temp = df[val].astype(float) > threshold
|
148 |
-
# temp = temp.astype(str)
|
149 |
-
# placeholder[val] = dict(temp.value_counts())
|
150 |
-
|
151 |
-
# count_df = pd.DataFrame.from_dict(placeholder)
|
152 |
-
# count_df = count_df.T
|
153 |
-
# count_df = count_df.reset_index()
|
154 |
-
# placeholder = []
|
155 |
-
# for i in range(len(count_df)):
|
156 |
-
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'False'])
|
157 |
-
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'True'])
|
158 |
-
|
159 |
-
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
|
160 |
-
# fig = px.bar(count_df, x='category', y='count',
|
161 |
-
# color='truth_value',
|
162 |
-
# height=400)
|
163 |
-
# st.write("")
|
164 |
-
# st.plotly_chart(fig)
|
165 |
-
|
166 |
-
# df['Validation'] = 'No'
|
167 |
-
# df['Val-Mitigation'] = 'No'
|
168 |
-
# df['Val-Adaptation'] = 'No'
|
169 |
-
# df_xlsx = to_excel(df)
|
170 |
-
# st.download_button(label='📥 Download Current Result',
|
171 |
-
# data=df_xlsx ,
|
172 |
-
# file_name= 'file_adaptation-mitigation.xlsx')
|
173 |
-
|
174 |
-
|
|
|
1 |
+
# set path
|
2 |
+
import glob, os, sys
|
3 |
+
sys.path.append('../utils')
|
4 |
+
|
5 |
+
#import needed libraries
|
6 |
+
import seaborn as sns
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
from utils.adapmit_classifier import load_adapmitClassifier,adapmit_classification
|
12 |
+
# from utils.keyword_extraction import textrank
|
13 |
+
import logging
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
from utils.config import get_classifier_params
|
16 |
+
from utils.preprocessing import paraLengthCheck
|
17 |
+
from io import BytesIO
|
18 |
+
import xlsxwriter
|
19 |
+
import plotly.express as px
|
20 |
+
|
21 |
+
# Declare all the necessary variables
|
22 |
+
classifier_identifier = 'adapmit'
|
23 |
+
params = get_classifier_params(classifier_identifier)
|
24 |
+
|
25 |
+
|
26 |
+
def app():
|
27 |
+
### Main app code ###
|
28 |
+
with st.container():
|
29 |
+
if 'key1' in st.session_state:
|
30 |
+
df = st.session_state.key1
|
31 |
+
|
32 |
+
classifier = load_adapmitClassifier(classifier_name=params['model_name'])
|
33 |
+
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
34 |
+
|
35 |
+
df = adapmit_classification(haystack_doc=df,
|
36 |
+
threshold= params['threshold'])
|
37 |
+
|
38 |
+
st.session_state.key1 = df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|