Update appStore/target.py
Browse files- appStore/target.py +17 -144
appStore/target.py
CHANGED
@@ -8,168 +8,41 @@ import matplotlib.pyplot as plt
|
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
-
from
|
|
|
12 |
import logging
|
13 |
logger = logging.getLogger(__name__)
|
14 |
from utils.config import get_classifier_params
|
15 |
from io import BytesIO
|
16 |
import xlsxwriter
|
17 |
import plotly.express as px
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Declare all the necessary variables
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
## Labels dictionary ###
|
24 |
-
_lab_dict = {
|
25 |
-
'NEGATIVE':'NO TARGET INFO',
|
26 |
-
'TARGET':'TARGET',
|
27 |
-
}
|
28 |
-
|
29 |
-
@st.cache_data
|
30 |
-
def to_excel(df):
|
31 |
-
df['Target Validation'] = 'No'
|
32 |
-
df['Netzero Validation'] = 'No'
|
33 |
-
df['GHG Validation'] = 'No'
|
34 |
-
df['Adapt-Mitig Validation'] = 'No'
|
35 |
-
df['Sector'] = 'No'
|
36 |
-
len_df = len(df)
|
37 |
-
output = BytesIO()
|
38 |
-
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
39 |
-
df.to_excel(writer, index=False, sheet_name='Sheet1')
|
40 |
-
workbook = writer.book
|
41 |
-
worksheet = writer.sheets['Sheet1']
|
42 |
-
worksheet.data_validation('L2:L{}'.format(len_df),
|
43 |
-
{'validate': 'list',
|
44 |
-
'source': ['No', 'Yes', 'Discard']})
|
45 |
-
worksheet.data_validation('M2:L{}'.format(len_df),
|
46 |
-
{'validate': 'list',
|
47 |
-
'source': ['No', 'Yes', 'Discard']})
|
48 |
-
worksheet.data_validation('N2:L{}'.format(len_df),
|
49 |
-
{'validate': 'list',
|
50 |
-
'source': ['No', 'Yes', 'Discard']})
|
51 |
-
worksheet.data_validation('O2:L{}'.format(len_df),
|
52 |
-
{'validate': 'list',
|
53 |
-
'source': ['No', 'Yes', 'Discard']})
|
54 |
-
worksheet.data_validation('P2:L{}'.format(len_df),
|
55 |
-
{'validate': 'list',
|
56 |
-
'source': ['No', 'Yes', 'Discard']})
|
57 |
-
writer.save()
|
58 |
-
processed_data = output.getvalue()
|
59 |
-
return processed_data
|
60 |
|
61 |
def app():
|
62 |
-
|
63 |
-
#### APP INFO #####
|
64 |
-
# st.write(
|
65 |
-
# """
|
66 |
-
# The **Target Extraction** app is an easy-to-use interface built \
|
67 |
-
# in Streamlit for analyzing policy documents for \
|
68 |
-
# Classification of the paragraphs/texts in the document *If it \
|
69 |
-
# contains any Economy-Wide Targets related information* - \
|
70 |
-
# developed by GIZ Data Service Center, GFA, IKI Tracs, \
|
71 |
-
# SV Klima and SPA. \n
|
72 |
-
# """)
|
73 |
-
|
74 |
-
|
75 |
### Main app code ###
|
76 |
with st.container():
|
77 |
if 'key0' in st.session_state:
|
78 |
df = st.session_state.key0
|
79 |
|
80 |
-
#load
|
81 |
-
classifier =
|
82 |
-
st.session_state['{}_classifier'.format(
|
|
|
83 |
if len(df) > 100:
|
84 |
warning_msg = ": This might take sometime, please sit back and relax."
|
85 |
else:
|
86 |
warning_msg = ""
|
87 |
|
88 |
-
|
89 |
-
threshold=
|
90 |
-
st.session_state.key1 = df
|
91 |
-
|
92 |
-
# # excel part
|
93 |
-
# temp = df[df['Relevancy']>threshold]
|
94 |
-
|
95 |
-
# df['Validation'] = 'No'
|
96 |
-
# df_xlsx = to_excel(df)
|
97 |
-
# st.download_button(label='📥 Download Current Result',
|
98 |
-
# data=df_xlsx ,
|
99 |
-
# file_name= 'file_target.xlsx')
|
100 |
-
|
101 |
-
def target_display():
|
102 |
-
if 'key1' in st.session_state:
|
103 |
-
df = st.session_state.key1
|
104 |
-
|
105 |
-
|
106 |
-
hits = df[df['Target Label'] == 'TARGET']
|
107 |
-
# hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i])
|
108 |
-
range_val = min(5,len(hits))
|
109 |
-
if range_val !=0:
|
110 |
-
count_target = sum(hits['Target Label'] == 'TARGET')
|
111 |
-
count_netzero = sum(hits['Netzero Label'] == 'NET-ZERO')
|
112 |
-
count_ghg = sum(hits['GHG Label'] == 'GHG')
|
113 |
-
count_economy = sum([True if 'Economy-wide' in x else False
|
114 |
-
for x in hits['Sector Label']])
|
115 |
-
|
116 |
-
# count_df = df['Target Label'].value_counts()
|
117 |
-
# count_df = count_df.rename('count')
|
118 |
-
# count_df = count_df.rename_axis('Target Label').reset_index()
|
119 |
-
# count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
|
120 |
-
|
121 |
-
# fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200)
|
122 |
-
c1, c2 = st.columns([1,1])
|
123 |
-
with c1:
|
124 |
-
st.write('**Target Paragraphs**: `{}`'.format(count_target))
|
125 |
-
st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
|
126 |
-
|
127 |
-
# st.plotly_chart(fig,use_container_width= True)
|
128 |
-
|
129 |
-
# count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
130 |
-
# count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
|
131 |
-
# count_economy = sum([True if 'Economy-wide' in x else False
|
132 |
-
# for x in hits['Sector Label']])
|
133 |
-
with c2:
|
134 |
-
st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg))
|
135 |
-
st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy))
|
136 |
-
st.write('-------------------')
|
137 |
-
hits = hits.sort_values(by=['Relevancy'], ascending=False)
|
138 |
-
netzerohit = hits[hits['Netzero Label'] == 'NET-ZERO']
|
139 |
-
if not netzerohit.empty:
|
140 |
-
netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
|
141 |
-
# st.write('-------------------')
|
142 |
-
# st.markdown("###### Netzero paragraph ######")
|
143 |
-
st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
|
144 |
-
netzerohit.iloc[0]['text'].replace("\n", " ")))
|
145 |
-
st.write("")
|
146 |
-
else:
|
147 |
-
st.info("🤔 No Netzero paragraph found")
|
148 |
-
|
149 |
-
# st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
|
150 |
-
st.write('-------------------')
|
151 |
-
st.markdown("###### Top few Target Classified paragraph/text results ######")
|
152 |
-
range_val = min(5,len(hits))
|
153 |
-
for i in range(range_val):
|
154 |
-
# the page number reflects the page that contains the main paragraph
|
155 |
-
# according to split limit, the overlapping part can be on a separate page
|
156 |
-
st.write('**Result {}** (Relevancy Score: {:.2f}): `page {}`, `Sector: {}`,\
|
157 |
-
`GHG: {}`, `Adapt-Mitig :{}`'\
|
158 |
-
.format(i+1,hits.iloc[i]['Relevancy'],
|
159 |
-
hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
|
160 |
-
hits.iloc[i]['GHG Label'],hits.iloc[i]['Adapt-Mitig Label']))
|
161 |
-
st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
|
162 |
-
hits = hits.reset_index(drop =True)
|
163 |
-
st.write('----------------')
|
164 |
-
st.write('Explore the data')
|
165 |
-
st.write(hits)
|
166 |
-
df_xlsx = to_excel(df)
|
167 |
-
|
168 |
-
with st.sidebar:
|
169 |
-
st.write('-------------')
|
170 |
-
st.download_button(label='📥 Download Result',
|
171 |
-
data=df_xlsx ,
|
172 |
-
file_name= 'cpu_analysis.xlsx')
|
173 |
|
174 |
-
|
175 |
-
st.info("🤔 No Targets found")
|
|
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
import streamlit as st
|
11 |
+
from st_aggrid import AgGrid
|
12 |
+
from utils.tapp_classifier import load_tappClassifier, tapp_classification
|
13 |
import logging
|
14 |
logger = logging.getLogger(__name__)
|
15 |
from utils.config import get_classifier_params
|
16 |
from io import BytesIO
|
17 |
import xlsxwriter
|
18 |
import plotly.express as px
|
19 |
+
from pandas.api.types import (
|
20 |
+
is_categorical_dtype,
|
21 |
+
is_datetime64_any_dtype,
|
22 |
+
is_numeric_dtype,
|
23 |
+
is_object_dtype,
|
24 |
+
is_list_like)
|
25 |
|
26 |
# Declare all the necessary variables
|
27 |
+
tapp_classifier_identifier = 'tapp'
|
28 |
+
param1 = get_classifier_params(tapp_classifier_identifier)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def app():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
### Main app code ###
|
32 |
with st.container():
|
33 |
if 'key0' in st.session_state:
|
34 |
df = st.session_state.key0
|
35 |
|
36 |
+
#load Classifiers
|
37 |
+
classifier = load_tappClassifier(classifier_name=param1['model_name'])
|
38 |
+
st.session_state['{}_classifier'.format(tapp_classifier_identifier)] = classifier
|
39 |
+
|
40 |
if len(df) > 100:
|
41 |
warning_msg = ": This might take sometime, please sit back and relax."
|
42 |
else:
|
43 |
warning_msg = ""
|
44 |
|
45 |
+
tapp_classification(haystack_doc=df,
|
46 |
+
threshold= param1['threshold'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
#st.session_state.key1 = df
|
|