# set path import glob, os, sys; sys.path.append('../utils') #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st from utils.policyaction_classifier import load_policyactionClassifier, policyaction_classification import logging logger = logging.getLogger(__name__) from utils.config import get_classifier_params from utils.preprocessing import paraLengthCheck from io import BytesIO import xlsxwriter import plotly.express as px # Declare all the necessary variables classifier_identifier = 'policyaction' params = get_classifier_params(classifier_identifier) @st.cache_data def to_excel(df): df['Target Validation'] = 'No' df['Netzero Validation'] = 'No' df['GHG Validation'] = 'No' df['Adapt-Mitig Validation'] = 'No' df['Sector'] = 'No' len_df = len(df) output = BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') df.to_excel(writer, index=False, sheet_name='Sheet1') workbook = writer.book worksheet = writer.sheets['Sheet1'] worksheet.data_validation('L2:L{}'.format(len_df), {'validate': 'list', 'source': ['No', 'Yes', 'Discard']}) worksheet.data_validation('M2:L{}'.format(len_df), {'validate': 'list', 'source': ['No', 'Yes', 'Discard']}) worksheet.data_validation('N2:L{}'.format(len_df), {'validate': 'list', 'source': ['No', 'Yes', 'Discard']}) worksheet.data_validation('O2:L{}'.format(len_df), {'validate': 'list', 'source': ['No', 'Yes', 'Discard']}) worksheet.data_validation('P2:L{}'.format(len_df), {'validate': 'list', 'source': ['No', 'Yes', 'Discard']}) writer.save() processed_data = output.getvalue() return processed_data def app(): ### Main app code ### with st.container(): if 'key1' in st.session_state: df = st.session_state.key1 classifier = load_policyactionClassifier(classifier_name=params['model_name']) st.session_state['{}_classifier'.format(classifier_identifier)] = classifier if sum(df['Target Label'] == 'TARGET') > 100: warning_msg = ": This might take sometime, please sit back and relax." else: warning_msg = "" df = policyaction_classification(haystack_doc=df, threshold= params['threshold']) st.session_state.key1 = df def action_display(): if 'key1' in st.session_state: df = st.session_state.key1 df['Action_check'] = df['Policy-Action Label'].apply(lambda x: True if 'Action' in x else False) hits = df[df['Action_check'] == True] # hits['GHG Label'] = hits['GHG Label'].apply(lambda i: _lab_dict[i]) range_val = min(5,len(hits)) if range_val !=0: count_action = len(hits) #count_netzero = sum(hits['Netzero Label'] == 'NETZERO') #count_ghg = sum(hits['GHG Label'] == 'GHG') #count_economy = sum([True if 'Economy-wide' in x else False # for x in hits['Sector Label']]) # count_df = df['Target Label'].value_counts() # count_df = count_df.rename('count') # count_df = count_df.rename_axis('Target Label').reset_index() # count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x]) # fig = px.bar(count_df, y="Label_def", x="count", orientation='h', height=200) # c1, c2 = st.columns([1,1]) # with c1: # st.write('**Target Paragraphs**: `{}`'.format(count_target)) # st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero)) # # # st.plotly_chart(fig,use_container_width= True) # # count_netzero = sum(hits['Netzero Label'] == 'NETZERO') # count_ghg = sum(hits['GHG Label'] == 'LABEL_2') # count_economy = sum([True if 'Economy-wide' in x else False # for x in hits['Sector Label']]) # with c2: # st.write('**GHG Related Paragraphs**: `{}`'.format(count_ghg)) # st.write('**Economy-wide Related Paragraphs**: `{}`'.format(count_economy)) # st.write('-------------------') # hits = hits.sort_values(by=['Relevancy'], ascending=False) # netzerohit = hits[hits['Netzero Label'] == 'NETZERO'] # if not netzerohit.empty: # netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False) # # st.write('-------------------') # st.markdown("###### Netzero paragraph ######") # st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'], # netzerohit.iloc[0]['text'].replace("\n", " "))) # st.write("") # else: # st.info("🤔 No Netzero paragraph found") # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])") # st.write('-------------------') st.write("") st.markdown("###### Top few Action Classified paragraph/text results from list of {} classified paragraphs ######".format(count_action)) st.markdown("""