# set path import glob, os, sys; sys.path.append('../utils') #import needed libraries import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st from st_aggrid import AgGrid import logging logger = logging.getLogger(__name__) from utils.config import get_classifier_params from io import BytesIO import xlsxwriter import plotly.express as px from pandas.api.types import ( is_categorical_dtype, is_datetime64_any_dtype, is_numeric_dtype, is_object_dtype, is_list_like) def to_excel(): if 'key1' in st.session_state: df = st.session_state['key1'] len_df = len(df) output = BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') df.to_excel(writer, index=False, sheet_name='rawdata') def build_sheet(df,name): df = df[df.keep == True] df = df.reset_index(drop=True) df.drop(columns = ['keep'], inplace=True) df.to_excel(writer,index=False,sheet_name = name) if 'target_hits' in st.session_state: target_hits = st.session_state['target_hits'] build_sheet(target_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector','Sub-Target']],'Target') if 'action_hits' in st.session_state: action_hits = st.session_state['action_hits'] build_sheet(action_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Actions') if 'policy_hits' in st.session_state: policy_hits = st.session_state['policy_hits'] build_sheet(policy_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Policy') if 'plan_hits' in st.session_state: plan_hits = st.session_state['plan_hits'] build_sheet(adaptation_hits[['text','page','keep','MitigationLabel','AdaptationLabel','Sector']],'Plans') workbook = writer.book writer.close() processed_data = output.getvalue() return processed_data def filter_dataframe(key, cols): """ Adds a UI on top of a dataframe to let viewers filter columns Args: key: key to look for in session_state cols: columns to use for filter in that order Returns: None """ modify = st.checkbox("Add filters") if not modify: return if key not in st.session_state: return else: df = st.session_state[key] df = df[cols + list(set(df.columns) - set(cols))] if len(df)==0: return modification_container = st.container() with modification_container: temp = list(set(cols) -{'page','keep'}) to_filter_columns = st.multiselect("Filter dataframe on", temp) for column in to_filter_columns: left, right = st.columns((1, 20)) left.write("↳") # Treat columns with < 10 unique values as categorical if is_categorical_dtype(df[column]): # st.write(type(df[column][0]), column) user_cat_input = right.multiselect( f"Values for {column}", df[column].unique(), default=list(df[column].unique()), ) df = df[df[column].isin(user_cat_input)] elif is_numeric_dtype(df[column]): _min = float(df[column].min()) _max = float(df[column].max()) step = (_max - _min) / 100 user_num_input = right.slider( f"Values for {column}", _min, _max, (_min, _max), step=step, ) df = df[df[column].between(*user_num_input)] elif is_list_like(df[column]) & (type(df[column][0]) == list) : list_vals = set(x for lst in df[column].tolist() for x in lst) user_multi_input = right.multiselect( f"Values for {column}", list_vals, default=list_vals, ) df['check'] = df[column].apply(lambda x: any(i in x for i in user_multi_input)) df = df[df.check == True] df.drop(columns = ['check'],inplace=True) else: user_text_input = right.text_input( f"Substring or regex in {column}", ) if user_text_input: df = df[df[column].str.lower().str.contains(user_text_input)] df = df.reset_index(drop=True) df = st.data_editor( df, column_config={ "keep": st.column_config.CheckboxColumn( help="Select which rows to keep", default=False, ) }, disabled=list(set(df.columns) - {'keep'}), hide_index=True, key = 'editor'+key, ) #("updating target hits....") # st.write(len(df[df.keep == True])) st.session_state[key] = df return